These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 7696569)
1. Fluorescence energy transfer in one dimension: frequency-domain fluorescence study of DNA-fluorophore complexes. Maliwal BP; Kuśba J; Lakowicz JR Biopolymers; 1995 Feb; 35(2):245-55. PubMed ID: 7696569 [TBL] [Abstract][Full Text] [Related]
2. DNA dynamics: a fluorescence resonance energy transfer study using a long-lifetime metal-ligand complex. Kang JS; Lakowicz JR; Piszczek G Arch Pharm Res; 2002 Apr; 25(2):143-50. PubMed ID: 12009026 [TBL] [Abstract][Full Text] [Related]
3. Determination of the Förster distance in polymer films by fluorescence decay for donor dyes with a nonexponential decay profile. Felorzabihi N; Froimowicz P; Haley JC; Bardajee GR; Li B; Bovero E; van Veggel FC; Winnik MA J Phys Chem B; 2009 Feb; 113(8):2262-72. PubMed ID: 19182945 [TBL] [Abstract][Full Text] [Related]
4. Torsional dynamics and orientation of DNA--DAPI complexes. Barcellona ML; Gratton E Biochemistry; 1996 Jan; 35(1):321-33. PubMed ID: 8555192 [TBL] [Abstract][Full Text] [Related]
5. Mixing ratio-dependent energy transfer from DNA-bound 4',6-diamidino-2-phenylindole to [Ru(1,10-phenanthroline)(2)dipyrido[3,2-a:2',3'-c]phenazine](2+). Choi JY; Lee JM; Lee H; Jung MJ; Kim SK; Kim JM Biophys Chem; 2008 Apr; 134(1-2):56-63. PubMed ID: 18304724 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous binding of meso-tetrakis(N-methylpyridinium-4-yl)porphyrin and 4',6-diamidino-2-phenylindole at the minor grooves of poly(dA).poly(dT) and poly[d(A-T)(2)]: fluorescence resonance energy transfer between DNA bound drugs. Jin B; Lee HM; Lee YA; Ko JH; Kim C; Kim SK J Am Chem Soc; 2005 Mar; 127(8):2417-24. PubMed ID: 15724996 [TBL] [Abstract][Full Text] [Related]
7. [Studies on application and mechanism of energy transfer system of acridine orange (AO)-rhodamine B (RB) dimer in the determination of DNA]. Gao F; Zhu CQ; Wang L Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Jan; 24(1):85-8. PubMed ID: 15768984 [TBL] [Abstract][Full Text] [Related]
8. Study on the formation and depolymerization of acridine orange dimer in acridine orange-sodium dodecyl benzene sulfonate-protein system. Wang F; Yang J; Wu X; Wang X; Feng L; Jia Z; Guo C J Colloid Interface Sci; 2006 Jun; 298(2):757-64. PubMed ID: 16458913 [TBL] [Abstract][Full Text] [Related]
9. Diffusion-enhanced lanthanide energy-transfer study of DNA-bound cobalt(III) bleomycins: comparisons of accessibility and electrostatic potential with DNA complexes of ethidium and acridine orange. Wensel TG; Chang CH; Meares CF Biochemistry; 1985 Jun; 24(12):3060-9. PubMed ID: 2410019 [TBL] [Abstract][Full Text] [Related]
10. Towards building artificial light harvesting complexes: enhanced singlet-singlet energy transfer between donor and acceptor pairs bound to albumins. Kumar CV; Duff MR Photochem Photobiol Sci; 2008 Dec; 7(12):1522-30. PubMed ID: 19037505 [TBL] [Abstract][Full Text] [Related]
11. Fluorescence resonance energy transfer-a spectroscopic probe for organized surfactant media. De S; Girigoswami A J Colloid Interface Sci; 2004 Mar; 271(2):485-95. PubMed ID: 14972626 [TBL] [Abstract][Full Text] [Related]
12. Fluorescence relaxation dynamics of acridine orange in nanosized micellar systems and DNA. Shaw AK; Pal SK J Phys Chem B; 2007 Apr; 111(16):4189-99. PubMed ID: 17394304 [TBL] [Abstract][Full Text] [Related]
13. DNA-binding geometry dependent energy transfer from 4',6-diamidino-2-phenylindole to cationic porphyrins. Jin B; Min KS; Han SW; Kim SK Biophys Chem; 2009 Sep; 144(1-2):38-45. PubMed ID: 19576678 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous binding of minor groove binder and intercalator to dodecamer DNA: importance of relative orientation of donor and acceptor in FRET. Banerjee D; Pal SK J Phys Chem B; 2007 May; 111(19):5047-52. PubMed ID: 17455977 [TBL] [Abstract][Full Text] [Related]
15. Fluorescence energy transfer between fluorescein label and DNA intercalators to detect nucleic acids hybridization in homogeneous media. Talavera EM; Bermejo R; Crovetto L; Orte A; Alvarez-Pez JM Appl Spectrosc; 2003 Feb; 57(2):208-15. PubMed ID: 14610959 [TBL] [Abstract][Full Text] [Related]
16. Time-resolved single tryptophan fluorescence in photoactive yellow protein monitors changes in the chromophore structure during the photocycle via energy transfer. Otto H; Hoersch D; Meyer TE; Cusanovich MA; Heyn MP Biochemistry; 2005 Dec; 44(51):16804-16. PubMed ID: 16363794 [TBL] [Abstract][Full Text] [Related]
17. Luminescence energy transfer with lanthanide chelates: interpretation of sensitized acceptor decay amplitudes. Heyduk T; Heyduk E Anal Biochem; 2001 Feb; 289(1):60-7. PubMed ID: 11161295 [TBL] [Abstract][Full Text] [Related]
18. Fluorescence resonance energy transfer between donor-acceptor pair on two oligonucleotides hybridized adjacently to DNA template. Wang L; Gaigalas AK; Blasic J; Holden MJ; Gallagher DT; Pires R Biopolymers; 2003; 72(6):401-12. PubMed ID: 14587062 [TBL] [Abstract][Full Text] [Related]
19. [Effect of organic solvents on DNA conformation by fluorescent probe method]. Li LS; Huang WD; Yan Y Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Oct; 21(5):685-7. PubMed ID: 12945332 [TBL] [Abstract][Full Text] [Related]
20. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]