These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 769668)

  • 81. Studies of the novel ketolide ABT-773: transport, binding to ribosomes, and inhibition of protein synthesis in Streptococcus pneumoniae.
    Capobianco JO; Cao Z; Shortridge VD; Ma Z; Flamm RK; Zhong P
    Antimicrob Agents Chemother; 2000 Jun; 44(6):1562-7. PubMed ID: 10817709
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Erythromycin, carbomycin, and spiramycin inhibit protein synthesis by stimulating the dissociation of peptidyl-tRNA from ribosomes.
    Menninger JR; Otto DP
    Antimicrob Agents Chemother; 1982 May; 21(5):811-8. PubMed ID: 6179465
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Nuclear magnetic resonance studies on the mode of action of erythromycin A.
    Gyi JI; Barber J
    Biochem Soc Trans; 1991 Aug; 19(3):313S. PubMed ID: 1783149
    [No Abstract]   [Full Text] [Related]  

  • 84. Fluorescent labelling of Escherichia coli ribosomal sulfhydryl groups.
    Perrin M; Pochon F
    Eur J Biochem; 1975 Sep; 57(2):319-24. PubMed ID: 1100404
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Macrolide-ketolide inhibition of MLS-resistant ribosomes is improved by alternative drug interaction with domain II of 23S rRNA.
    Douthwaite S; Hansen LH; Mauvais P
    Mol Microbiol; 2000 Apr; 36(1):183-93. PubMed ID: 10760175
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Evidence for variable rates of ribosome movement in Escherichia coli.
    Talkad V; Schneider E; Kennell D
    J Mol Biol; 1976 Jun; 104(1):299-303. PubMed ID: 785012
    [No Abstract]   [Full Text] [Related]  

  • 87. Binding site of the bridged macrolides in the Escherichia coli ribosome.
    Xiong L; Korkhin Y; Mankin AS
    Antimicrob Agents Chemother; 2005 Jan; 49(1):281-8. PubMed ID: 15616307
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Synergistic interaction of the streptogramins with the ribosome.
    Contreras A; Vázquez D
    Eur J Biochem; 1977 Apr; 74(3):549-51. PubMed ID: 323016
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Kinetics of macrolide action: the josamycin and erythromycin cases.
    Lovmar M; Tenson T; Ehrenberg M
    J Biol Chem; 2004 Dec; 279(51):53506-15. PubMed ID: 15385552
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Ribosome binding by tRNAs with fluorescent labeled 3' termini.
    Wells BD; Cantor CR
    Nucleic Acids Res; 1980 Jul; 8(14):3229-46. PubMed ID: 6160468
    [TBL] [Abstract][Full Text] [Related]  

  • 91. An alteration in ribosome function caused by equimolar binding of erythromycin.
    Teraoka H; Tanaka K
    Biochim Biophys Acta; 1971 Mar; 232(3):509-13. PubMed ID: 4929433
    [No Abstract]   [Full Text] [Related]  

  • 92. Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin.
    Poulsen SM; Kofoed C; Vester B
    J Mol Biol; 2000 Dec; 304(3):471-81. PubMed ID: 11090288
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Inhibitors of ribosome functions.
    Pestka S
    Annu Rev Microbiol; 1971; 25():487-562. PubMed ID: 4949424
    [No Abstract]   [Full Text] [Related]  

  • 94. [Studies on the mechanism of translocation in ribosomes. V. Comparison of the effect of antibiotic inhibitors of ribosomes on "enzymatic" and "non-enzymatic" translation].
    Kostiashkina OE; Asatrian LS; Gavrilova LP; Spirin AS
    Mol Biol (Mosk); 1975; 9(5):775-82. PubMed ID: 765776
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Light-scattering studies showing the effect of initiation factors on the reversible dissociation of Escherichia coli ribosomes.
    Grunberg-Manago M; Dessen P; Pantaloni D; Godefroy-Colburn T; Wolfe AD; Dondon J
    J Mol Biol; 1975 May; 94(3):461-78. PubMed ID: 1100842
    [No Abstract]   [Full Text] [Related]  

  • 96. Ribosomes from erythromycin-resistant mutants of Escherichia coli Q13.
    Otaka E; Teraoka H; Tamaki M; Tanaka K; Osawa S
    J Mol Biol; 1970 Mar; 48(3):499-510. PubMed ID: 4911813
    [No Abstract]   [Full Text] [Related]  

  • 97. Exploring antibiotic resistance with chemical tools.
    Velema WA
    Chem Commun (Camb); 2023 May; 59(41):6148-6158. PubMed ID: 37039397
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Fluorescent macrolide probes - synthesis and use in evaluation of bacterial resistance.
    Stone MRL; Łapińska U; Pagliara S; Masi M; Blanchfield JT; Cooper MA; Blaskovich MAT
    RSC Chem Biol; 2020 Dec; 1(5):395-404. PubMed ID: 34458770
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Fluorescent antibiotics for real-time tracking of pathogenic bacteria.
    Miao L; Liu W; Qiao Q; Li X; Xu Z
    J Pharm Anal; 2020 Oct; 10(5):444-451. PubMed ID: 33133728
    [TBL] [Abstract][Full Text] [Related]  

  • 100. From Differential Stains to Next Generation Physiology: Chemical Probes to Visualize Bacterial Cell Structure and Physiology.
    Hira J; Uddin MJ; Haugland MM; Lentz CS
    Molecules; 2020 Oct; 25(21):. PubMed ID: 33114655
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.