BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 7697868)

  • 1. Neuronal differentiation in cultures of murine neural crest. II. Development of capsaicin-sensitive neurons.
    Matsumoto SG
    Brain Res Dev Brain Res; 1994 Nov; 83(1):17-27. PubMed ID: 7697868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal differentiation in cultures of murine neural crest. I. Neurotransmitter expression.
    Matsumoto SG
    Brain Res Dev Brain Res; 1994 Nov; 83(1):1-16. PubMed ID: 7697863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glial cell line-derived neurotrophic factor promotes the development of adrenergic neurons in mouse neural crest cultures.
    Maxwell GD; Reid K; Elefanty A; Bartlett PF; Murphy M
    Proc Natl Acad Sci U S A; 1996 Nov; 93(23):13274-9. PubMed ID: 8917581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential development of cholinergic neurons from cranial and trunk neural crest cells in vitro.
    Leblanc GG; Epstein ML; Bronner-Fraser ME
    Dev Biol; 1990 Feb; 137(2):318-30. PubMed ID: 2406174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Culture conditions affect the cholinergic development of an isolated subpopulation of chick mesencephalic neural crest cells.
    Barald KF
    Dev Biol; 1989 Oct; 135(2):349-66. PubMed ID: 2776973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of Ret-, p75(NTR)-, Phox2a-, Phox2b-, and tyrosine hydroxylase-immunoreactivity by undifferentiated neural crest-derived cells and different classes of enteric neurons in the embryonic mouse gut.
    Young HM; Ciampoli D; Hsuan J; Canty AJ
    Dev Dyn; 1999 Oct; 216(2):137-52. PubMed ID: 10536054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective expression of high-affinity nerve growth factor receptors on tyrosine hydroxylase-containing neuron-like cells in neural crest cultures.
    Bernd P
    J Neurosci; 1988 Oct; 8(10):3549-55. PubMed ID: 2903911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of pluripotent neural crest cells in the embryo and the role of brain-derived neurotrophic factor in the commitment to the primary sensory neuron lineage.
    Sieber-Blum M; Ito K; Richardson MK; Langtimm CJ; Duff RS
    J Neurobiol; 1993 Feb; 24(2):173-84. PubMed ID: 8445386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurotrophins facilitate synthesis of choline acetyltransferase and tyrosine hydroxylase in cultured mouse neural stem cells independently of their neuronal differentiation.
    Ito H; Nomoto H; Furukawa Y; Furukawa S
    Neurosci Lett; 2003 Mar; 339(3):231-4. PubMed ID: 12633895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catecholaminergic cells and support cell precursors in neural crest cultures differentially express nerve growth factor receptors.
    Bernd P
    Int J Dev Neurosci; 1989; 7(5):449-63. PubMed ID: 2573244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of a neural phenotype in a serotonergic endocrine cell derived from the neural crest.
    Barasch JM; Mackey H; Tamir H; Nunez EA; Gershon MD
    J Neurosci; 1987 Sep; 7(9):2874-83. PubMed ID: 3305802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regenerative effect of human recombinant NGF on capsaicin-lesioned sensory neurons in the adult rat.
    Schicho R; Skofitsch G; Donnerer J
    Brain Res; 1999 Jan; 815(1):60-9. PubMed ID: 9974123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nerve growth factor (NGF) regulates adult rat cultured dorsal root ganglion neuron responses to the excitotoxin capsaicin.
    Winter J; Forbes CA; Sternberg J; Lindsay RM
    Neuron; 1988 Dec; 1(10):973-81. PubMed ID: 3272159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A catecholaminergic sensory neuron phenotype in cranial derivatives of the neural crest: regulation by cell aggregation and nerve growth factor.
    Katz DM
    J Neurosci; 1991 Dec; 11(12):3991-4002. PubMed ID: 1683903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the neurotrophic factors BDNF and NGF in the commitment of pluripotent neural crest cells.
    Sieber-Blum M
    Neuron; 1991 Jun; 6(6):949-55. PubMed ID: 1711349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurotrophins alter the numbers of neurotransmitter-ir mature vagal/glossopharyngeal visceral afferent neurons in vitro.
    Helke CJ; Verdier-Pinard D
    Brain Res; 2000 Nov; 884(1--2):206-12. PubMed ID: 11082504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coexpression of sensory and autonomic neurotransmitter traits by avian neural crest cells in vitro.
    Leblanc GG
    J Neurobiol; 1990 Jun; 21(4):567-77. PubMed ID: 1695915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Placode and neural crest-derived sensory neurons are responsive at early developmental stages to brain-derived neurotrophic factor.
    Lindsay RM; Thoenen H; Barde YA
    Dev Biol; 1985 Dec; 112(2):319-28. PubMed ID: 4076545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stem cell factor is a neurotrophic factor for neural crest-derived chick sensory neurons.
    Carnahan JF; Patel DR; Miller JA
    J Neurosci; 1994 Mar; 14(3 Pt 2):1433-40. PubMed ID: 7510331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The sympathoadrenal lineage in avian embryos. II. Effects of glucocorticoids on cultured neural crest cells.
    Vogel KS; Weston JA
    Dev Biol; 1990 May; 139(1):13-23. PubMed ID: 1970316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.