BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 7698006)

  • 1. Chromosomal distribution of the major satellite DNA of South American rodents of the genus Ctenomys.
    Rossi MS; Redi CA; Viale G; Massarini AI; Capanna E
    Cytogenet Cell Genet; 1995; 69(3-4):179-84. PubMed ID: 7698006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for rolling-circle replication in a major satellite DNA from the South American rodents of the genus Ctenomys.
    Rossi MS; Reig OA; Zorzópulos J
    Mol Biol Evol; 1990 Jul; 7(4):340-50. PubMed ID: 1974692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Karyotype evolution in South American subterranean rodents Ctenomys magellanicus (Rodentia: Octodontidae): chromosome rearrangements and (TTAGGG)n telomeric sequence localization in 2n=34 and 2n=36 chromosomal forms.
    Lizarralde M; Bolzan A; Bianchi M
    Hereditas; 2003; 139(1):13-7. PubMed ID: 14641468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytogenetic and molecular analysis of the satellite DNA of the genus Ctenomys (Rodentia Octodontidae) from Uruguay.
    Novello A; Cortinas MN; Suárez M; Musto H
    Chromosome Res; 1996 Aug; 4(5):335-9. PubMed ID: 8871821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recurrent amplifications and deletions of satellite DNA accompanied chromosomal diversification in South American tuco-tucos (genus Ctenomys, Rodentia: Octodontidae): a phylogenetic approach.
    Slamovits CH; Cook JA; Lessa EP; Rossi MS
    Mol Biol Evol; 2001 Sep; 18(9):1708-19. PubMed ID: 11504851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome composition in Venezuelan spiny-rats of the genus Proechimys(Rodentia, Echimyidae). I. Genome size, C-heterochromatin and repetitive DNAs in situ hybridization patterns.
    Garagna S; Pérez-Zapata A; Zuccotti M; Mascheretti S; Marziliano N; Redi CA; Aguilera M; Capanna E
    Cytogenet Cell Genet; 1997; 78(1):36-43. PubMed ID: 9345903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrative analysis of chromosome banding, telomere localization and molecular genetics in the highly variable Ctenomys of the Corrientes group (Rodentia; Ctenomyidae).
    Buschiazzo LM; Caraballo DA; Cálcena E; Longarzo ML; Labaroni CA; Ferro JM; Rossi MS; Bolzán AD; Lanzone C
    Genetica; 2018 Oct; 146(4-5):403-414. PubMed ID: 30076493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possible heterochromatin horizontal spread through non-homologous chromosome associations in pachytene chromocenters of Ctenomys Rodents.
    Novello A; Villar S; Urioste J
    Cytogenet Genome Res; 2010; 128(1-3):152-61. PubMed ID: 20389031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retroviral-like features in the monomer of the major satellite DNA from the South American rodents of the genus Ctenomys.
    Rossi MS; Pesce CG; Reig OA; Kornblihtt AR; Zorzópulos J
    DNA Seq; 1993; 3(6):379-81. PubMed ID: 8219281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SINE-B1 Distribution and Chromosome Rearrangements in the South American Proechimys gr. goeldii (Echimyidae, Rodentia).
    Araújo NP; Sena RS; Bonvicino CR; Kuhn GCS; Svartman M
    Cytogenet Genome Res; 2021; 161(1-2):6-13. PubMed ID: 33556945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosome plasticity in Ctenomys (Rodentia Octodontidae): chromosome 1 evolution and heterochromatin variation.
    Novello A; Villar S
    Genetica; 2006 May; 127(1-3):303-9. PubMed ID: 16850234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Satellite DNA and chromosomal evolution in Ctenomys rodents: a necessary clarification.
    Rossi MS
    Cytogenet Genome Res; 2011; 134(2):163-4. PubMed ID: 21430367
    [No Abstract]   [Full Text] [Related]  

  • 13. Homomorphic sex chromosomes and the intriguing Y chromosome of Ctenomys rodent species (Rodentia, Ctenomyidae).
    Suárez-Villota EY; Pansonato-Alves JC; Foresti F; Gallardo MH
    Cytogenet Genome Res; 2014; 143(4):232-40. PubMed ID: 25227566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence evolution of the major satellite DNA of the genus Ctenomys (Octodontidae, Rodentia).
    Ellingsen A; Slamovits CH; Rossi MS
    Gene; 2007 May; 392(1-2):283-90. PubMed ID: 17331676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular analysis of chromosomal polymorphism in the South American cricetid, Graomys griseoflavus.
    Zambelli A; Vidal-Rioja L
    Chromosome Res; 1995 Sep; 3(6):361-7. PubMed ID: 7551551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The karyotype of the South American rodent Kunsia tomentosus (Lichtenstein, 1830).
    Andrades-Miranda J; Nunes AP; Oliveira LF; Mattevi MS
    Cytobios; 1999; 98(389):137-47. PubMed ID: 10533268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analyses of heterochromatin in Microtus: sequence heterogeneity and localized expansion and contraction of satellite DNA arrays.
    Modi WS
    Cytogenet Cell Genet; 1993; 62(2-3):142-8. PubMed ID: 8428514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the satellite DNA Msat-160 from the species Chionomys nivalis (Rodentia, Arvicolinae).
    Acosta MJ; Marchal JA; Martínez S; Puerma E; Bullejos M; la de Guardia RD; Sánchez A
    Genetica; 2007 May; 130(1):43-51. PubMed ID: 16897458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of nuclear factors to a satellite DNA of retroviral origin with marked differences in copy number among species of the rodent Ctenomys.
    Pesce CG; Rossi MS; Muro AF; Reig OA; Zorzópulos J; Kornblihtt AR
    Nucleic Acids Res; 1994 Feb; 22(4):656-61. PubMed ID: 8127714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geographical variation of heterochromatin in Ctenomys flamarioni (Rodentia-Octodontidae) and its cytogenetic relationships with other species of the genus.
    de Freitas TR
    Cytogenet Cell Genet; 1994; 67(3):193-8. PubMed ID: 8062596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.