BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 7698006)

  • 21. Amplification of the major satellite DNA family (FA-SAT) in a cat fibrosarcoma might be related to chromosomal instability.
    Santos S; Chaves R; Adega F; Bastos E; Guedes-Pinto H
    J Hered; 2006; 97(2):114-8. PubMed ID: 16469867
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chromosome polymorphism in Astyanax fasciatus (Teleostei, Characidae). 2--Chromosomal location of a satellite DNA.
    Pazza R; Frehner Kavalco K; Bertollo LA
    Cytogenet Genome Res; 2008; 122(1):61-6. PubMed ID: 18931487
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New karyotypes and some considerations about the chromosomal diversification of Ctenomys minutus (Rodentia: Ctenomyidae) on the coastal plain of the Brazilian state of Rio Grande do Sul.
    Freygang CC; Marinho JR; de Freitas TR
    Genetica; 2004 Jun; 121(2):125-32. PubMed ID: 15330112
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular cytogenetics of the Equidae. I. Purification and cytological localization of a (G + C)-rich satellite DNA from Equus przewalskii.
    Ryder OA; Hansen SK
    Chromosoma; 1979 Apr; 72(2):115-29. PubMed ID: 456203
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conservation of whole arms during chromosomal divergence of phyllotine rodents.
    Walker LI; Spotorno AE; Fernández-Donoso R
    Cytogenet Cell Genet; 1979; 24(4):209-16. PubMed ID: 509991
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Chromosomal localization of human X chromosome alphoid satellite DNA by in situ hybridization and its preliminary application].
    Qiu H
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 1991 Jun; 13(3):203-7. PubMed ID: 1831726
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relationship of mouse minor satellite DNA to centromere activity.
    Broccoli D; Miller OJ; Miller DA
    Cytogenet Cell Genet; 1990; 54(3-4):182-6. PubMed ID: 2265565
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The library model for satellite DNA evolution: a case study with the rodents of the genus Ctenomys (Octodontidae) from the Iberá marsh, Argentina.
    Caraballo DA; Belluscio PM; Rossi MS
    Genetica; 2010 Dec; 138(11-12):1201-10. PubMed ID: 21072566
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Satellite DNA in the three C-bands of an unusual mouse marker chromosome. A model of chromosomal evolution.
    Arnason U; Manolova Y; Manolov G; Bregula U; Levan A
    Exp Cell Res; 1986 May; 164(1):256-60. PubMed ID: 3956596
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human (Homo sapiens) and chimpanzee (Pan troglodytes) share similar ancestral centromeric alpha satellite DNA sequences but other fractions of heterochromatin differ considerably.
    Luke S; Verma RS
    Am J Phys Anthropol; 1995 Jan; 96(1):63-71. PubMed ID: 7726296
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In situ hybridization and chromosome banding in mammalian species.
    Chaves R; Adega F; Santos S; Guedes-Pinto H; Heslop-Harrison JS
    Cytogenet Genome Res; 2002; 96(1-4):113-6. PubMed ID: 12438786
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular cloning of an equine satellite-type DNA sequence and its chromosomal localization.
    Sakagami M; Hirota K; Awata T; Yasue H
    Cytogenet Cell Genet; 1994; 66(1):27-30. PubMed ID: 8275703
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The species and chromosomal distribution of the centromeric alpha-satellite I sequence from sheep in the tribe Caprini and other Bovidae.
    Chaves R; Guedes-Pinto H; Heslop-Harrison J; Schwarzacher T
    Cytogenet Cell Genet; 2000; 91(1-4):62-6. PubMed ID: 11173832
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular analysis of populations of Ctenomys (Caviomorpha, Rodentia) with high karyotypic variability.
    Giménez MD; Mirol PM; Bidau CJ; Searle JB
    Cytogenet Genome Res; 2002; 96(1-4):130-6. PubMed ID: 12438789
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolutionary story of a satellite DNA from Phodopus sungorus (Rodentia, Cricetidae).
    Paço A; Adega F; Meštrović N; Plohl M; Chaves R
    Genome Biol Evol; 2014 Oct; 6(10):2944-55. PubMed ID: 25336681
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Karyotypes and chromosomal differentiation of two species of the genus Tachyoryctes (Rodentia, Tachyoryctinae) from Ethiopia].
    Aniskii VM; Lavrenchenko LA; Varshavskiĭ AA; Milishnikov AN
    Genetika; 1997 Sep; 33(9):1266-72. PubMed ID: 9445818
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A GC-rich satellite DNA and karyology of the bivalve mollusk Donax trunculus: a dominance of GC-rich heterochromatin.
    Petrović V; Pérez-García C; Pasantes JJ; Satović E; Prats E; Plohl M
    Cytogenet Genome Res; 2009; 124(1):63-71. PubMed ID: 19372670
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heteromorphism of human chromosome 18 detected by fluorescent in situ hybridization.
    Bonfatti A; Giunta C; Sensi A; Gruppioni R; Rubini M; Fontana F
    Eur J Histochem; 1993; 37(2):149-54. PubMed ID: 7688600
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A sugar beet (Beta vulgaris L.) reference FISH karyotype for chromosome and chromosome-arm identification, integration of genetic linkage groups and analysis of major repeat family distribution.
    Paesold S; Borchardt D; Schmidt T; Dechyeva D
    Plant J; 2012 Nov; 72(4):600-11. PubMed ID: 22775355
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Asymmetric staining of Ctenomys chromosomes after treatment with AluI restriction nuclease.
    Novello A; Perez T
    Hereditas; 2001; 135(1):71-4. PubMed ID: 12035617
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.