These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 7698251)
1. Myoblast fusion is not a prerequisite for the appearance of calcium current, calcium release, and contraction in rat skeletal muscle cells developing in culture. Constantin B; Cognard C; Raymond G Exp Cell Res; 1995 Apr; 217(2):497-505. PubMed ID: 7698251 [TBL] [Abstract][Full Text] [Related]
2. Involvement of the dihydropyridine receptor and internal Ca2+ stores in myoblast fusion. Seigneurin-Venin S; Parrish E; Marty I; Rieger F; Romey G; Villaz M; Garcia L Exp Cell Res; 1996 Mar; 223(2):301-7. PubMed ID: 8601407 [TBL] [Abstract][Full Text] [Related]
3. Characterization of spontaneous and action potential-induced calcium transients in developing myotubes in vitro. Flucher BE; Andrews SB Cell Motil Cytoskeleton; 1993; 25(2):143-57. PubMed ID: 8324830 [TBL] [Abstract][Full Text] [Related]
4. Involvement of K(Ca) channels and stretch-activated channels in calcium influx, triggering membrane fusion of chick embryonic myoblasts. Shin KS; Park JY; Ha DB; Chung CH; Kang MS Dev Biol; 1996 Apr; 175(1):14-23. PubMed ID: 8608860 [TBL] [Abstract][Full Text] [Related]
5. Transient production of alpha-smooth muscle actin by skeletal myoblasts during differentiation in culture and following intramuscular implantation. Springer ML; Ozawa CR; Blau HM Cell Motil Cytoskeleton; 2002 Apr; 51(4):177-86. PubMed ID: 11977092 [TBL] [Abstract][Full Text] [Related]
6. Myotube driven myogenic recruitment of cells during in vitro myogenesis. Breton M; Li ZL; Paulin D; Harris JA; Rieger F; Pinçon-Raymond M; Garcia L Dev Dyn; 1995 Feb; 202(2):126-36. PubMed ID: 7734731 [TBL] [Abstract][Full Text] [Related]
7. The role of L- and T-type Ca2+ currents during the in vitro aging of murine myogenic (i28) cells in culture. Luin E; Ruzzier F Cell Calcium; 2007 May; 41(5):479-89. PubMed ID: 17064763 [TBL] [Abstract][Full Text] [Related]
8. Novel glycosaminoglycan mimetic (RGTA, RGD120) contributes to enhance skeletal muscle satellite cell fusion by increasing intracellular Ca2+ and calpain activity. Zimowska M; Constantin B; Papy-Garcia D; Raymond G; Cognard C; Caruelle JP; Moraczewski J; Martelly I J Cell Physiol; 2005 Nov; 205(2):237-45. PubMed ID: 15887234 [TBL] [Abstract][Full Text] [Related]
9. Determination of depolarisation- and agonist-evoked calcium fluxes on skeletal muscle cells in primary culture. Szappanos H; Cseri J; Deli T; Kovács L; Csernoch L J Biochem Biophys Methods; 2004 Apr; 59(1):89-101. PubMed ID: 15134910 [TBL] [Abstract][Full Text] [Related]
10. Crooked neck dwarf (cn) mutant chicken skeletal muscle cells in low density primary cultures fail to express normal alpha ryanodine receptor and exhibit a partial mutant phenotype. Airey JA; Deerinck TJ; Ellisman MH; Houenou LJ; Ivanenko A; Kenyon JL; McKemy DD; Sutko JL Dev Dyn; 1993 Jul; 197(3):189-202. PubMed ID: 8219360 [TBL] [Abstract][Full Text] [Related]
12. Role of the sarcoplasmic reticulum in regulating the activity-dependent expression of the glycogen phosphorylase gene in contractile skeletal muscle cells. Vali S; Carlsen R; Pessah I; Gorin F J Cell Physiol; 2000 Nov; 185(2):184-99. PubMed ID: 11025440 [TBL] [Abstract][Full Text] [Related]
13. Sphingosine 1-phosphate induces cell contraction via calcium-independent/Rho-dependent pathways in undifferentiated skeletal muscle cells. Formigli L; Meacci E; Vassalli M; Nosi D; Quercioli F; Tiribilli B; Tani A; Squecco R; Francini F; Bruni P; Zecchi Orlandini S J Cell Physiol; 2004 Jan; 198(1):1-11. PubMed ID: 14584038 [TBL] [Abstract][Full Text] [Related]
15. Myoblast fusion requires cytosolic calcium elevation but not activation of voltage-dependent calcium channels. Constantin B; Cognard C; Raymond G Cell Calcium; 1996 May; 19(5):365-74. PubMed ID: 8793176 [TBL] [Abstract][Full Text] [Related]
16. Myoblast proliferation and syncytial fusion both depend on connexin43 function in transfected skeletal muscle primary cultures. Gorbe A; Krenacs T; Cook JE; Becker DL Exp Cell Res; 2007 Apr; 313(6):1135-48. PubMed ID: 17331498 [TBL] [Abstract][Full Text] [Related]
17. [Characteristics of functioning of electromechanical coupling in striated muscles of higher and lower vertebrates]. Nasledov GA; Katina IE; Zhitnikova IuV Biofizika; 2002; 47(4):716-27. PubMed ID: 12298213 [TBL] [Abstract][Full Text] [Related]
18. A lethal mutation in mice eliminates the slow calcium current in skeletal muscle cells. Beam KG; Knudson CM; Powell JA Nature; 1986 Mar 13-19; 320(6058):168-70. PubMed ID: 2419767 [TBL] [Abstract][Full Text] [Related]
19. [Excitation-contraction coupling in skeletal muscle: questions remaining after 50 years of research]. Calderón-Vélez JC; Figueroa-Gordon LC Biomedica; 2009 Mar; 29(1):140-60. PubMed ID: 19753848 [TBL] [Abstract][Full Text] [Related]
20. Measurement of calcium release due to inositol trisphosphate receptors in skeletal muscle. Casas M; Altamirano F; Jaimovich E Methods Mol Biol; 2012; 798():383-93. PubMed ID: 22130849 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]