BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 769832)

  • 1. A gene controlling the synthesis of non specific alkaline phosphatase in Saccharomyces cerevisiae.
    Toh-E A; Nakamura H; Oshima Y
    Biochim Biophys Acta; 1976 Mar; 428(1):182-92. PubMed ID: 769832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of acid phosphatase mutants in Saccharomyces cerevisiae.
    To-E A; Ueda Y; Kakimoto SI; Oshima Y
    J Bacteriol; 1973 Feb; 113(2):727-38. PubMed ID: 4570606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the genetic locus for the structural gene and a new regulatory gene for the synthesis of repressible alkaline phosphatase in Saccharomyces cerevisiae.
    Kaneko Y; Toh-e A; Oshima Y
    Mol Cell Biol; 1982 Feb; 2(2):127-37. PubMed ID: 7050668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disturbance of the machinery for the gene expression by acidic pH in the repressible acid phosphatase system of Saccharomyces cerevisiae.
    Toh-e A; Kobayashi S; Oshima Y
    Mol Gen Genet; 1978 Jun; 162(2):139-49. PubMed ID: 27717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of inorganic phosphate transport systems in Saccharomyces cerevisiae.
    Tamai Y; Toh-e A; Oshima Y
    J Bacteriol; 1985 Nov; 164(2):964-8. PubMed ID: 3902805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of phosphatase synthesis in Saccharomyces cerevisiae--a review.
    Oshima Y; Ogawa N; Harashima S
    Gene; 1996 Nov; 179(1):171-7. PubMed ID: 8955644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and function of the PHO82-pho4 locus controlling the synthesis of repressible acid phosphatase of Saccharomyces cerevisiae.
    Toh-e A; Inouye S; Oshima Y
    J Bacteriol; 1981 Jan; 145(1):221-32. PubMed ID: 7007314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A particulate form of alkaline phosphatase in the yeast, Saccharomyces cerevisiae.
    Mitchell JK; Fonzi WA; Wilkerson J; Opheim DJ
    Biochim Biophys Acta; 1981 Feb; 657(2):482-94. PubMed ID: 7011403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a dominant, constitutive mutation, PHOO, for the repressible acid phosphatase synthesis in Saccharomyces cerevisiae.
    Toh-E A; Oshima Y
    J Bacteriol; 1974 Nov; 120(2):608-17. PubMed ID: 4616940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and characterization of recessive, constitutive mutations for repressible acid phosphatase synthesis in Saccharomyces cerevisiae.
    Ueda Y; To-E A; Oshima Y
    J Bacteriol; 1975 Jun; 122(3):911-22. PubMed ID: 1097406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of phosphate metabolism in Neurospora crassa: isolation of mutants deficient in ther repressible alkaline phosphatase.
    Gleason MK; Metzenberg RL
    Genetics; 1974 Oct; 78(2):645-59. PubMed ID: 4280980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inorganic phosphate transport in Escherichia coli: involvement of two genes which play a role in alkaline phosphatase regulation.
    Willsky GR; Bennett RL; Malamy MH
    J Bacteriol; 1973 Feb; 113(2):529-39. PubMed ID: 4570598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genes coding for the structure of the acid phosphatases in Saccharomyces cerevisiae.
    Toh-e A; Kakimoto S
    Mol Gen Genet; 1975 Dec; 143(1):65-70. PubMed ID: 765744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Genetico-biochemical study of the acid phosphatases of Saccharomyces cerevisiae yeasts. X. Analysis of mutations arising in gene acp3].
    Kozhin SA; Samsonova MG; Maarich MA; Smirnov MN
    Genetika; 1980; 16(3):408-17. PubMed ID: 6995224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Protein content of E. coli membrane under conditions of repressed and derepressed biosynthesis of alkaline phosphatase].
    Severin AI; Nesmeianova MA
    Mol Biol (Mosk); 1976; 10(6):1369-77. PubMed ID: 802786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sporulation in Bacillus subtilis 168. Control of synthesis of alkaline phosphatase.
    Grant WD
    J Gen Microbiol; 1974 Jun; 82(2):363-9. PubMed ID: 4214484
    [No Abstract]   [Full Text] [Related]  

  • 17. Distribution of the sites of alkaline phosphatase(s) activity in vegetative cells of Bacillus subtilis.
    Ghosh BK; Wouters JT; Lampen JO
    J Bacteriol; 1971 Nov; 108(2):928-37. PubMed ID: 4108474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A constitutive mutation, phoT, of the repressible acid phosphatase synthesis with inability to transport inorganic phosphate in Saccharomyces cerevisiae.
    Ueda Y; Oshima Y
    Mol Gen Genet; 1975; 136(3):255-9. PubMed ID: 16094976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yeast permeabilization as a tool for measurement of in situ enzyme activity: localization of alkaline phosphatase.
    Spasova D; Galabova D
    Z Naturforsch C J Biosci; 1998; 53(5-6):347-51. PubMed ID: 9679325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of regulatory mutants in Saccharomyces cerevisiae.
    Greer H; Fink GR
    Methods Cell Biol; 1975; 11():247-72. PubMed ID: 1102851
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.