These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 7698332)

  • 61. Glucose and disaccharide-sensing mechanisms modulate the expression of alpha-amylase in barley embryos.
    Loreti E; Alpi A; Perata P
    Plant Physiol; 2000 Jul; 123(3):939-48. PubMed ID: 10889242
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The 'pair of sugar tongs' site on the non-catalytic domain C of barley alpha-amylase participates in substrate binding and activity.
    Bozonnet S; Jensen MT; Nielsen MM; Aghajari N; Jensen MH; Kramhøft B; Willemoës M; Tranier S; Haser R; Svensson B
    FEBS J; 2007 Oct; 274(19):5055-67. PubMed ID: 17803687
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Substrate-inhibitor interactions in the kinetics of alpha-amylase inhibition by ragi alpha-amylase/trypsin inhibitor (RATI) and its various N-terminal fragments.
    Alam N; Gourinath S; Dey S; Srinivasan A; Singh TP
    Biochemistry; 2001 Apr; 40(14):4229-33. PubMed ID: 11284678
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Modulation of activity and substrate binding modes by mutation of single and double subsites +1/+2 and -5/-6 of barley alpha-amylase 1.
    Mori H; Bak-Jensen KS; Gottschalk TE; Motawia MS; Damager I; Møller BL; Svensson B
    Eur J Biochem; 2001 Dec; 268(24):6545-58. PubMed ID: 11737209
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Removal of the four C-terminal glycine-rich repeats enhances the thermostability and substrate binding affinity of barley beta-amylase.
    Ma YF; Eglinton JK; Evans DE; Logue SJ; Langridge P
    Biochemistry; 2000 Nov; 39(44):13350-5. PubMed ID: 11063571
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Molecular cloning and characterization of α-amylase/subtilisin inhibitor from rhizome of Ligusticum chuanxiong.
    Yu JH; Li YY; Xiang M; Zhu JQ; Huang XH; Wang WJ; Tan R; Zhou JY; Liao H
    Biotechnol Lett; 2017 Jan; 39(1):141-148. PubMed ID: 27752792
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Two secondary carbohydrate binding sites on the surface of barley alpha-amylase 1 have distinct functions and display synergy in hydrolysis of starch granules.
    Nielsen MM; Bozonnet S; Seo ES; Mótyán JA; Andersen JM; Dilokpimol A; Abou Hachem M; Gyémánt G; Naested H; Kandra L; Sigurskjold BW; Svensson B
    Biochemistry; 2009 Aug; 48(32):7686-97. PubMed ID: 19606835
    [TBL] [Abstract][Full Text] [Related]  

  • 68. New alpha-amylase and trypsin inhibitors among the CM-proteins of barley (Hordeum vulgare).
    Barber D; Sanchez-Monge R; Mendez E; Lazaro A; Garcia-Olmedo F; Salcedo G
    Biochim Biophys Acta; 1986 Jan; 869(1):115-8. PubMed ID: 3484638
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The amino acid sequence of a 20 kDa bifunctional subtilisin/alpha-amylase inhibitor from bran [correction of brain] of rice (Oryza sativa L.) seeds.
    Ohtsubo K; Richardson M
    FEBS Lett; 1992 Aug; 309(1):68-72. PubMed ID: 1511747
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Structure of the bifunctional inhibitor of trypsin and alpha-amylase from ragi seeds at 2.2 A resolution.
    Gourinath S; Alam N; Srinivasan A; Betzel C; Singh TP
    Acta Crystallogr D Biol Crystallogr; 2000 Mar; 56(Pt 3):287-93. PubMed ID: 10713515
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Inhibition of α-amylase activity by cellulose: Kinetic analysis and nutritional implications.
    Dhital S; Gidley MJ; Warren FJ
    Carbohydr Polym; 2015 Jun; 123():305-12. PubMed ID: 25843863
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Kinetic study of soybean beta-amylase. The effect of pH.
    Nitta Y; Kinikata T; Watanabe T
    J Biochem; 1979 Jan; 85(1):41-5. PubMed ID: 33163
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Insights into the effect mechanism of acidic pH condition on the in vitro starch digestion of black highland barley semi-dried noodles.
    Cui XR; Bai YP; Guo XN; Zhu KX
    Int J Biol Macromol; 2024 Apr; 265(Pt 2):130928. PubMed ID: 38513901
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Comparisons of Copy Number, Genomic Structure, and Conserved Motifs for α-Amylase Genes from Barley, Rice, and Wheat.
    Zhang Q; Li C
    Front Plant Sci; 2017; 8():1727. PubMed ID: 29051768
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Isolation and properties of crystalline alpha-amylase from germinated barley.
    SCHWIMMER S; BALLS AK
    J Biol Chem; 1949 Jul; 179(3):1063-74. PubMed ID: 18134570
    [No Abstract]   [Full Text] [Related]  

  • 76. Multispectroscopy analysis of polystyrene nanoplastic interaction with diastase α-amylase.
    Azhagesan A; Chandrasekaran N; Mukherjee A
    Ecotoxicol Environ Saf; 2022 Dec; 247():114226. PubMed ID: 36306622
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Further purification and characterisation of a new amylase found in barley.
    MacGregor AW; Daussant J; Niku-Paavola ML
    J Sci Food Agric; 1979 Nov; 30(11):1071-6. PubMed ID: 316483
    [No Abstract]   [Full Text] [Related]  

  • 78. Barley viability during storage: use of magnetic resonance as a potential tool to study viability loss.
    Gruwel ML; Yin XS; Edney MJ; Schroeder SW; MacGregor AW; Abrams S
    J Agric Food Chem; 2002 Feb; 50(4):667-76. PubMed ID: 11829626
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Immunochemical quantitation of isoenzymes. Alpha-amylase isoenzymes in barley malt.
    Bog-Hansen TC; Daussant J
    Anal Biochem; 1974 Oct; 61(2):522-7. PubMed ID: 4472965
    [No Abstract]   [Full Text] [Related]  

  • 80. Electro-immunoabsorption in gel, application to enzyme studies (alpha- and beta-amylases from barley).
    Daussant J; CARFANTAN N
    J Immunol Methods; 1975 Oct; 8(4):373-82. PubMed ID: 1194675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.