BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 7698485)

  • 1. Production of transgenic plants containing elevated levels of lysine and threonine.
    Galili G; Karchi H; Shaul O; Perl A; Cahana A; Tzchori IB; Zhu XZ; Galili S
    Biochem Soc Trans; 1994 Nov; 22(4):921-5. PubMed ID: 7698485
    [No Abstract]   [Full Text] [Related]  

  • 2. Lysine and threonine metabolism are subject to complex patterns of regulation in Arabidopsis.
    Ben-Tzvi Tzchori I; Perl A; Galili G
    Plant Mol Biol; 1996 Nov; 32(4):727-34. PubMed ID: 8980524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concerted regulation of lysine and threonine synthesis in tobacco plants expressing bacterial feedback-insensitive aspartate kinase and dihydrodipicolinate synthase.
    Shaul O; Galili G
    Plant Mol Biol; 1993 Nov; 23(4):759-68. PubMed ID: 8251629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced levels of free and protein-bound threonine in transgenic alfalfa (Medicago sativa L.) expressing a bacterial feedback-insensitive aspartate kinase gene.
    Galili S; Guenoune D; Wininger S; Hana B; Schupper A; Ben-Dor B; Kapulnik Y
    Transgenic Res; 2000 Apr; 9(2):137-44. PubMed ID: 10951697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of lysine synthesis in transgenic potato plants expressing a bacterial dihydrodipicolinate synthase in their chloroplasts.
    Perl A; Shaul O; Galili G
    Plant Mol Biol; 1992 Aug; 19(5):815-23. PubMed ID: 1643284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the aspartic acid metabolic pathway using mutant genes.
    Azevedo RA
    Amino Acids; 2002; 22(3):217-30. PubMed ID: 12083066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lysine synthesis and catabolism are coordinately regulated during tobacco seed development.
    Karchi H; Shaul O; Galili G
    Proc Natl Acad Sci U S A; 1994 Mar; 91(7):2577-81. PubMed ID: 8146157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophoretic and chromatographic evaluation of transgenic barley expressing a bacterial dihydrodipicolinate synthase.
    Ohnoutkova L; Zitka O; Mrizova K; Vaskova J; Galuszka P; Cernei N; Smedley MA; Harwood WA; Adam V; Kizek R
    Electrophoresis; 2012 Aug; 33(15):2365-73. PubMed ID: 22887157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolically engineered soybean seed with enhanced threonine levels: biochemical characterization and seed-specific expression of lysine-insensitive variants of aspartate kinases from the enteric bacterium Xenorhabdus bovienii.
    Qi Q; Huang J; Crowley J; Ruschke L; Goldman BS; Wen L; Rapp WD
    Plant Biotechnol J; 2011 Feb; 9(2):193-204. PubMed ID: 20633240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of the aspartate family biosynthetic pathway in barley (Hordeum vulgare L.) by transformation with heterologous genes encoding feed-back-insensitive aspartate kinase and dihydrodipicolinate synthase.
    Brinch-Pedersen H; Galili G; Knudsen S; Holm PB
    Plant Mol Biol; 1996 Nov; 32(4):611-20. PubMed ID: 8980513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transgenic canola and soybean seeds with increased lysine.
    Falco SC; Guida T; Locke M; Mauvais J; Sanders C; Ward RT; Webber P
    Biotechnology (N Y); 1995 Jun; 13(6):577-82. PubMed ID: 9634796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of mutated forms of aspartate kinase and cystathionine gamma-synthase in tobacco leaves resulted in the high accumulation of methionine and threonine.
    Hacham Y; Matityahu I; Schuster G; Amir R
    Plant J; 2008 Apr; 54(2):260-71. PubMed ID: 18208521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lysine biosynthesis and nitrogen metabolism in quinoa (Chenopodium quinoa): study of enzymes and nitrogen-containing compounds.
    Varisi VA; Camargos LS; Aguiar LF; Christofoleti RM; Medici LO; Azevedo RA
    Plant Physiol Biochem; 2008 Jan; 46(1):11-8. PubMed ID: 18006325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated study of threonine-pathway enzyme kinetics in Escherichia coli.
    Chassagnole C; Raïs B; Quentin E; Fell DA; Mazat JP
    Biochem J; 2001 Jun; 356(Pt 2):415-23. PubMed ID: 11368768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of lysine-sensitive aspartokinase III on lysine biosynthesis in Escherichia coli K-12.
    Huang KJ; Hseu TH
    Proc Natl Sci Counc Repub China B; 1993 Jul; 17(3):91-7. PubMed ID: 8290655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overproduction of lysine by mutant strains of Escherichia coli with defective lysine transport systems.
    Halsall DM
    Biochem Genet; 1975 Feb; 13(1-2):109-24. PubMed ID: 1095014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of lysine biosynthesis in Escherichia coli K12.
    Patte JC; Richaud C; Boy E; Reinisch F; Richaud F; Cassan M
    Acta Microbiol Acad Sci Hung; 1976; 23(2):121-8. PubMed ID: 9781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the lysine biosynthetic pathway in Escherichia coli K-12: isolation of a cis-dominant constitutive mutant for AK III synthesis.
    Cassan M; Boy E; Borne F; Patte JC
    J Bacteriol; 1975 Aug; 123(2):391-9. PubMed ID: 238953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Threonine accumulation in the seeds of a barley mutant with an altered aspartate kinase.
    Bright SW; Miflin BJ; Rognes SE
    Biochem Genet; 1982 Apr; 20(3-4):229-43. PubMed ID: 6285889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lysine enhances methionine content by modulating the expression of S-adenosylmethionine synthase.
    Hacham Y; Song L; Schuster G; Amir R
    Plant J; 2007 Sep; 51(5):850-61. PubMed ID: 17617175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.