These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 7698499)

  • 1. Magnetic resonance spectroscopy studies on Ca2+, Zn2+ and energy metabolism in superfused brain slices.
    Bachelard H; Badar-Goffer R; Morris P; Thatcher N
    Biochem Soc Trans; 1994 Nov; 22(4):988-91. PubMed ID: 7698499
    [No Abstract]   [Full Text] [Related]  

  • 2. Magnetic resonance spectroscopy studies on changes in cerebral calcium and zinc and the energy state caused by excitotoxic amino acids.
    Thatcher NM; Prior MJ; Morris PG; Bachelard HS
    J Neurochem; 1999 Jun; 72(6):2471-8. PubMed ID: 10349857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitotoxic amino acids cause appearance of magnetic resonance spectroscopy-observable zinc in superfused cortical slices.
    Badar-Goffer R; Morris P; Thatcher N; Bachelard H
    J Neurochem; 1994 Jun; 62(6):2488-91. PubMed ID: 7910636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of N-methyl-D-aspartate on [Ca2+]i and the energy state in the brain by 19F- and 31P-nuclear magnetic resonance spectroscopy.
    Ben-Yoseph O; Bachelard HS; Badar-Goffer RS; Dolin SJ; Morris PG
    J Neurochem; 1990 Oct; 55(4):1446-9. PubMed ID: 2204683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of some metabolic effects of N-methylaspartate stereoisomers, glutamate and depolarization: a multinuclear MRS study.
    Thatcher NM; Badar-Goffer RS; Ben-Yoseph O; McLean MA; Morris PG; Prior MJ; Taylor A; Bachelard HS
    Neurochem Res; 2002 Feb; 27(1-2):51-8. PubMed ID: 11930910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 31P nuclear-magnetic-resonance studies on superfused cerebral tissues.
    Bachelard HS; Cox DW; Feeney J; Morris PG
    Biochem Soc Trans; 1985 Oct; 13(5):835-9. PubMed ID: 4065415
    [No Abstract]   [Full Text] [Related]  

  • 7. Measurement of free intracellular calcium in the brain by 19F-nuclear magnetic resonance spectroscopy.
    Bachelard HS; Badar-Goffer RS; Brooks KJ; Dolin SJ; Morris PG
    J Neurochem; 1988 Oct; 51(4):1311-3. PubMed ID: 3138389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular chelation of calcium prevents cell damage following severe hypoxia in the rat cerebral cortex as studied by NMR spectroscopy ex vivo.
    Gröhn O; Kauppinen R
    Cell Calcium; 1996 Dec; 20(6):509-14. PubMed ID: 8985596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of NMDA-induced protein kinase C translocation by a Zn2+ chelator: implication of intracellular Zn2+.
    Baba A; Etoh S; Iwata H
    Brain Res; 1991 Aug; 557(1-2):103-8. PubMed ID: 1747744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of glutamate-induced intracellular energy failure in neonatal cerebral cortical slices by kynurenic acid, dizocilpine, and NBQX.
    Espanol MT; Xu Y; Litt L; Yang GY; Chang LH; James TL; Weinstein P; Chan PH
    J Cereb Blood Flow Metab; 1994 Mar; 14(2):269-78. PubMed ID: 7906691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-methyl-D-aspartate-evoked adenosine and inosine release from neurons requires extracellular calcium.
    Zamzow CR; Bose R; Parkinson FE
    Can J Physiol Pharmacol; 2009 Oct; 87(10):850-8. PubMed ID: 20052011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neither moderate hypoxia nor mild hypoglycaemia alone causes any significant increase in cerebral [Ca2+]i: only a combination of the two insults has this effect. A 31P and 19F NMR study.
    Badar-Goffer RS; Thatcher NM; Morris PG; Bachelard HS
    J Neurochem; 1993 Dec; 61(6):2207-14. PubMed ID: 8245972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitatory amino acid-evoked calcium influx and calcium-dependent neurotoxicity in rat cortical cultures.
    Zinkand WC; Thompson C; Salama AI; Patel J
    Ann N Y Acad Sci; 1992 May; 648():355-7. PubMed ID: 1353334
    [No Abstract]   [Full Text] [Related]  

  • 14. Use of 1,2-bis(2-amino-5-fluorophenoxy)ethane-N,N,N',N'-tetraacetic acid (5FBAPTA) in the measurement of free intracellular calcium in the brain by 19F-nuclear magnetic resonance spectroscopy.
    Badar-Goffer RS; Ben-Yoseph O; Dolin SJ; Morris PG; Smith GA; Bachelard HS
    J Neurochem; 1990 Sep; 55(3):878-84. PubMed ID: 2117051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulatory effects of NMDA on phosphoinositide responses evoked by the metabotropic glutamate receptor agonist 1S,3R-ACPD in neonatal rat cerebral cortex.
    Challiss RA; Mistry R; Gray DW; Nahorski SR
    Br J Pharmacol; 1994 May; 112(1):231-9. PubMed ID: 7913380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methylmercury-induced elevations in intrasynaptosomal zinc concentrations: an 19F-NMR study.
    Denny MF; Atchison WD
    J Neurochem; 1994 Jul; 63(1):383-6. PubMed ID: 8207443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of beta-bungarotoxin, diphenylhydantoin and metabolic inhibitors on calcium uptake and on monovalent cations and high-energy phosphate contents of brain slices.
    Swanson PD
    J Neurochem; 1977 Oct; 29(4):767-9. PubMed ID: 73570
    [No Abstract]   [Full Text] [Related]  

  • 18. Studies on metabolic regulation using NMR spectroscopy.
    Bachelard H; Badar-Goffer R; Ben-Yoseph O; Morris P; Thatcher N
    Dev Neurosci; 1993; 15(3-5):207-15. PubMed ID: 7805572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation of noradrenaline release in human cerebral cortex mediated by N-methyl-D-aspartate (NMDA) and non-NMDA receptors.
    Fink K; Schultheiss R; Göthert M
    Br J Pharmacol; 1992 May; 106(1):67-72. PubMed ID: 1380384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium neurotoxicity.
    Paschen W
    J Neurochem; 1999 Jun; 72(6):2625-6. PubMed ID: 10349876
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.