These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 7698499)

  • 21. Zinc deficiency decreases the concentration of N-methyl-D-aspartate receptors in guinea pig cortical synaptic membranes.
    Browning JD; O'Dell BL
    J Nutr; 1995 Aug; 125(8):2083-9. PubMed ID: 7643242
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 19F nuclear magnetic resonance studies of free calcium in heart cells.
    Gupta RK; Wittenberg BA
    Biophys J; 1993 Dec; 65(6):2547-58. PubMed ID: 8312491
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Antagonists of NMDA-activated current in cortical neurons: competition with glycine and blockade of open channels.
    Huettner JE
    Adv Exp Med Biol; 1990; 268():35-43. PubMed ID: 2150155
    [No Abstract]   [Full Text] [Related]  

  • 24. Mechanism of action and persistence of neuroprotection by cell-permeant Ca2+ chelators.
    Tymianski M; Spigelman I; Zhang L; Carlen PL; Tator CH; Charlton MP; Wallace MC
    J Cereb Blood Flow Metab; 1994 Nov; 14(6):911-23. PubMed ID: 7929656
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Presynaptic 5-HT autoreceptors modulate N-methyl-D-aspartate-evoked 5-hydroxytryptamine release in the guinea-pig brain cortex.
    Fink K; Böing C; Göthert M
    Eur J Pharmacol; 1996 Apr; 300(1-2):79-82. PubMed ID: 8741169
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 31P-n.m.r. studies on cerebral energy metabolism under conditions of hypoglycaemia and hypoxia in vitro.
    Cox DW; Morris PG; Feeney J; Bachelard HS
    Biochem J; 1983 May; 212(2):365-70. PubMed ID: 6882378
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cerebral energy metabolism and intracellular pH during severe hypoxia and recovery: a study using 1H, 31P, and 1H [13C] nuclear magnetic resonance spectroscopy in the guinea pig cerebral cortex in vitro.
    Kauppinen RA; Williams SR
    J Neurosci Res; 1990 Jul; 26(3):356-69. PubMed ID: 2398514
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An NMDA receptor on isolated secretory nerve endings.
    Giovannucci DR; Stuenkel EL
    Brain Res; 1995 Dec; 702(1-2):246-50. PubMed ID: 8846083
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neuroprotective effect of hypothermia in cortical cultures exposed to oxygen-glucose deprivation or excitatory amino acids.
    Bruno VM; Goldberg MP; Dugan LL; Giffard RG; Choi DW
    J Neurochem; 1994 Oct; 63(4):1398-406. PubMed ID: 7523591
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NMDA receptor modification during graded hypoxia in the cerebral cortex of newborn piglets.
    Fritz KI; Zubrow AB; Mishra OP; Delivoria-Papadopoulos M
    Biol Neonate; 2002; 82(1):46-52. PubMed ID: 12119541
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glutamate receptor-mediated calcium surges in neurons derived from P19 cells.
    Morley P; MacPherson P; Whitfield JF; Harris EW; McBurney MW
    J Neurochem; 1995 Sep; 65(3):1093-9. PubMed ID: 7643087
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 19F NMR calcium changes, edema and histology in neonatal rat brain slices during glutamate toxicity.
    Espanol MT; Litt L; Xu Y; Chang LH; James TL; Weinstein PR; Chan PH
    Brain Res; 1994 May; 647(1):172-6. PubMed ID: 7915186
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Involvement of Na+ and Ca2+ channel activation and resultant nitric oxide synthesis in glutamate-mediated hypoxic injury in rat cerebrocortical slices.
    Oka M; Itoh Y; Ukai Y
    Life Sci; 2000 Sep; 67(19):2331-43. PubMed ID: 11065180
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Movements of calcium and other cations in isolated cerebral tissues.
    Stahl WL; Swanson PD
    J Neurochem; 1971 Mar; 18(3):415-27. PubMed ID: 5559252
    [No Abstract]   [Full Text] [Related]  

  • 35. From the synaptosome to the intact brain.
    Kauppinen RA
    Biochem Soc Trans; 1994 Nov; 22(4):965-9. PubMed ID: 7698494
    [No Abstract]   [Full Text] [Related]  

  • 36. Increased macromolecular resonances in the rat cerebral cortex during severe energy failure as detected by 1H nuclear magnetic resonance spectroscopy.
    Hakumäki JM; Gröhn OH; Pirttilä TR; Kauppinen RA
    Neurosci Lett; 1996 Jul; 212(3):151-4. PubMed ID: 8843095
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphorus nuclear magnetic resonance studies on the calcium-dependent energy metabolism of rat cerebrum under conditions of increased potassium in vitro.
    Takei M; Kawano Y; Yamada K
    Neurosci Res; 1992 Jan; 12(5):596-605. PubMed ID: 1313954
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The phenomenon of "pre-ischaemic conditioning" in the brain only partly involves the NMDA receptor: a magnetic resonance study.
    Prior M; Thatcher N; Morris P; Reese T; Bachelard H
    Neurochem Res; 2005 Oct; 30(10):1219-25. PubMed ID: 16341583
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glutamate, NMDA, and AMPA induced changes in extracellular space volume and tortuosity in the rat spinal cord.
    Vargová L; Jendelová P; Chvátal A; Syková E
    J Cereb Blood Flow Metab; 2001 Sep; 21(9):1077-89. PubMed ID: 11524612
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ca2+- and Mg2+-modulated lipolysis in neonatal rat brain slices observed by one- and two-dimensional NMR.
    Gasparovic C; Berghmans K
    J Neurochem; 1998 Oct; 71(4):1727-32. PubMed ID: 9751208
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.