These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 7699391)

  • 1. Huntington's disease: the neuroexcitotoxin aspartate is increased in platelets and decreased in plasma.
    Reilmann R; Rolf LH; Lange HW
    J Neurol Sci; 1994 Dec; 127(1):48-53. PubMed ID: 7699391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Huntington's disease. Glutamate and aspartate metabolism in blood platelets.
    Mangano RM; Schwarcz R
    J Neurol Sci; 1982 Mar; 53(3):489-500. PubMed ID: 6121842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Huntington's disease: N-methyl-D-aspartate receptor coagonist glycine is increased in platelets.
    Reilmann R; Rolf LH; Lange HW
    Exp Neurol; 1997 Apr; 144(2):416-9. PubMed ID: 9168841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Platelet glutamate and aspartate uptake in Huntington's disease.
    Mangano RM; Schwarcz R
    J Neurochem; 1981 Oct; 37(4):1072-4. PubMed ID: 6119355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Platelet-derived extracellular vesicles in Huntington's disease.
    Denis HL; Lamontagne-Proulx J; St-Amour I; Mason SL; Weiss A; Chouinard S; Barker RA; Boilard E; Cicchetti F
    J Neurol; 2018 Nov; 265(11):2704-2712. PubMed ID: 30209650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alterations in N-methyl-D-aspartate receptor sensitivity and magnesium blockade occur early in development in the R6/2 mouse model of Huntington's disease.
    Starling AJ; André VM; Cepeda C; de Lima M; Chandler SH; Levine MS
    J Neurosci Res; 2005 Nov; 82(3):377-86. PubMed ID: 16211559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid neurotransmitter abnormalities in Huntington's disease and the quinolinic acid animal model of Huntington's disease.
    Ellison DW; Beal MF; Mazurek MF; Malloy JR; Bird ED; Martin JB
    Brain; 1987 Dec; 110 ( Pt 6)():1657-73. PubMed ID: 2892568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CYP46A1 protects against NMDA-mediated excitotoxicity in Huntington's disease: Analysis of lipid raft content.
    Boussicault L; Kacher R; Lamazière A; Vanhoutte P; Caboche J; Betuing S; Potier MC
    Biochimie; 2018 Oct; 153():70-79. PubMed ID: 30107216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced high-affinity glutamate uptake sites in the brains of patients with Huntington's disease.
    Cross AJ; Slater P; Reynolds GP
    Neurosci Lett; 1986 Jun; 67(2):198-202. PubMed ID: 2873534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and mechanism of glutamate neurotoxicity in primary striatal cultures.
    Freese A; DiFiglia M; Koroshetz WJ; Beal MF; Martin JB
    Brain Res; 1990 Jun; 521(1-2):254-64. PubMed ID: 1976413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabotropic glutamate receptors and cell-type-specific vulnerability in the striatum: implication for ischemia and Huntington's disease.
    Calabresi P; Centonze D; Pisani A; Bernardi G
    Exp Neurol; 1999 Jul; 158(1):97-108. PubMed ID: 10448421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. N-methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington's disease.
    Fan MM; Raymond LA
    Prog Neurobiol; 2007 Apr; 81(5-6):272-93. PubMed ID: 17188796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton magnetic resonance spectroscopy in Huntington's disease: evidence in favour of the glutamate excitotoxic theory.
    Taylor-Robinson SD; Weeks RA; Bryant DJ; Sargentoni J; Marcus CD; Harding AE; Brooks DJ
    Mov Disord; 1996 Mar; 11(2):167-73. PubMed ID: 8684387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cortical lesion of Huntington's disease: further neurochemical characterization, and reproduction of some of the histological and neurochemical features by N-methyl-D-aspartate lesions of rat cortex.
    Storey E; Kowall NW; Finn SF; Mazurek MF; Beal MF
    Ann Neurol; 1992 Oct; 32(4):526-34. PubMed ID: 1280937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Striatal deficiency of L-pyroglutamic acid in Huntington's disease is accompanied by increased plasma levels.
    Uhlhaas S; Lange H
    Brain Res; 1988 Aug; 457(1):196-9. PubMed ID: 2971422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased calbindin-D28k immunoreactivity in striatal projection neurons of R6/2 Huntington's disease transgenic mice.
    Sun Z; Wang HB; Deng YP; Lei WL; Xie JP; Meade CA; Del Mar N; Goldowitz D; Reiner A
    Neurobiol Dis; 2005 Dec; 20(3):907-17. PubMed ID: 15990326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal vulnerability in mouse models of Huntington's disease: membrane channel protein changes.
    Ariano MA; Wagle N; Grissell AE
    J Neurosci Res; 2005 Jun; 80(5):634-45. PubMed ID: 15880743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-methyl-D-aspartate receptors amplify activation and aggregation of human platelets.
    Kalev-Zylinska ML; Green TN; Morel-Kopp MC; Sun PP; Park YE; Lasham A; During MJ; Ward CM
    Thromb Res; 2014 May; 133(5):837-47. PubMed ID: 24593912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential changes in thalamic and cortical excitatory synapses onto striatal spiny projection neurons in a Huntington disease mouse model.
    Kolodziejczyk K; Raymond LA
    Neurobiol Dis; 2016 Feb; 86():62-74. PubMed ID: 26621114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What excitotoxin kills striatal neurons in Huntington's disease? Clues from neurochemical studies.
    Perry TL; Hansen S
    Neurology; 1990 Jan; 40(1):20-4. PubMed ID: 1967491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.