BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 7699720)

  • 1. Response regulators of bacterial signal transduction systems: selective domain shuffling during evolution.
    Pao GM; Saier MH
    J Mol Evol; 1995 Feb; 40(2):136-54. PubMed ID: 7699720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A common switch in activation of the response regulators NtrC and PhoB: phosphorylation induces dimerization of the receiver modules.
    Fiedler U; Weiss V
    EMBO J; 1995 Aug; 14(15):3696-705. PubMed ID: 7641688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA sequence of a gene in Escherichia coli encoding a putative tripartite transcription factor with receiver, ATPase and DNA binding domains.
    Ramseier TM; Figge RM; Saier MH
    DNA Seq; 1994; 5(1):17-24. PubMed ID: 7894055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phyletic Distribution and Lineage-Specific Domain Architectures of Archaeal Two-Component Signal Transduction Systems.
    Galperin MY; Makarova KS; Wolf YI; Koonin EV
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29263101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ter-dependent stress response systems: novel pathways related to metal sensing, production of a nucleoside-like metabolite, and DNA-processing.
    Anantharaman V; Iyer LM; Aravind L
    Mol Biosyst; 2012 Oct; 8(12):3142-65. PubMed ID: 23044854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphotransfer reactions of the CbbRRS three-protein two- component system from Rhodopseudomonas palustris CGA010 appear to be controlled by an internal molecular switch on the sensor kinase.
    Romagnoli S; Tabita FR
    J Bacteriol; 2007 Jan; 189(2):325-35. PubMed ID: 17071758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonplastid eukaryotic response regulators have a monophyletic origin and evolved from their bacterial precursors in parallel with their cognate sensor kinases.
    Pao GM; Saier MH
    J Mol Evol; 1997 Jun; 44(6):605-13. PubMed ID: 9169552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies.
    Rigali S; Derouaux A; Giannotta F; Dusart J
    J Biol Chem; 2002 Apr; 277(15):12507-15. PubMed ID: 11756427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversification of catalytic activities and ligand interactions in the protein fold shared by the sugar isomerases, eIF2B, DeoR transcription factors, acyl-CoA transferases and methenyltetrahydrofolate synthetase.
    Anantharaman V; Aravind L
    J Mol Biol; 2006 Feb; 356(3):823-42. PubMed ID: 16376935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer.
    Leipe DD; Koonin EV; Aravind L
    J Mol Biol; 2004 Oct; 343(1):1-28. PubMed ID: 15381417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo characterization of the unorthodox BvgS two-component sensor protein of Bordetella pertussis.
    Beier D; Schwarz B; Fuchs TM; Gross R
    J Mol Biol; 1995 May; 248(3):596-610. PubMed ID: 7752227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural comparison of the PhoB and OmpR DNA-binding/transactivation domains and the arrangement of PhoB molecules on the phosphate box.
    Okamura H; Hanaoka S; Nagadoi A; Makino K; Nishimura Y
    J Mol Biol; 2000 Feb; 295(5):1225-36. PubMed ID: 10653699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Negative regulation of AAA + ATPase assembly by two component receiver domains: a transcription activation mechanism that is conserved in mesophilic and extremely hyperthermophilic bacteria.
    Doucleff M; Chen B; Maris AE; Wemmer DE; Kondrashkina E; Nixon BT
    J Mol Biol; 2005 Oct; 353(2):242-55. PubMed ID: 16169010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of spo0A homologues in diverse Bacillus and Clostridium species identifies a probable DNA-binding domain.
    Brown DP; Ganova-Raeva L; Green BD; Wilkinson SR; Young M; Youngman P
    Mol Microbiol; 1994 Nov; 14(3):411-26. PubMed ID: 7885226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria.
    Tam R; Saier MH
    Microbiol Rev; 1993 Jun; 57(2):320-46. PubMed ID: 8336670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of the Escherichia coli response regulator NarL.
    Baikalov I; Schröder I; Kaczor-Grzeskowiak M; Grzeskowiak K; Gunsalus RP; Dickerson RE
    Biochemistry; 1996 Aug; 35(34):11053-61. PubMed ID: 8780507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural classification of bacterial response regulators: diversity of output domains and domain combinations.
    Galperin MY
    J Bacteriol; 2006 Jun; 188(12):4169-82. PubMed ID: 16740923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Action of receiver and activator modules of UhpA in transcriptional control of the Escherichia coli sugar phosphate transport system.
    Webber CA; Kadner RJ
    Mol Microbiol; 1995 Mar; 15(5):883-93. PubMed ID: 7596290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arac/XylS family of transcriptional regulators.
    Gallegos MT; Schleif R; Bairoch A; Hofmann K; Ramos JL
    Microbiol Mol Biol Rev; 1997 Dec; 61(4):393-410. PubMed ID: 9409145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. XylS-Pm promoter interactions through two helix-turn-helix motifs: identifying XylS residues important for DNA binding and activation.
    Domínguez-Cuevas P; Marín P; Marqués S; Ramos JL
    J Mol Biol; 2008 Jan; 375(1):59-69. PubMed ID: 18005985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.