These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 7699882)

  • 1. [Catalytic antibody and its medical applications].
    Fujii I; Iwabuchi Y
    Nihon Rinsho; 1995 Feb; 53(2):518-27. PubMed ID: 7699882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in catalytic antibodies.
    Scanlon TS; Schultz PG
    Philos Trans R Soc Lond B Biol Sci; 1991 May; 332(1263):157-64. PubMed ID: 1678534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective chemotherapeutic strategies using catalytic antibodies: a common pro-moiety for antibody-directed abzyme prodrug therapy.
    Kakinuma H; Fujii I; Nishi Y
    J Immunol Methods; 2002 Nov; 269(1-2):269-81. PubMed ID: 12379367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the nitroreductase prodrug-activating system. Crystal structures of complexes with the inhibitor dicoumarol and dinitrobenzamide prodrugs and of the enzyme active form.
    Johansson E; Parkinson GN; Denny WA; Neidle S
    J Med Chem; 2003 Sep; 46(19):4009-20. PubMed ID: 12954054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent progress in asymmetric bifunctional catalysis using multimetallic systems.
    Shibasaki M; Kanai M; Matsunaga S; Kumagai N
    Acc Chem Res; 2009 Aug; 42(8):1117-27. PubMed ID: 19435320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling enzyme reaction mechanisms, specificity and catalysis.
    Mulholland AJ
    Drug Discov Today; 2005 Oct; 10(20):1393-402. PubMed ID: 16253878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactivation of self-immolative dendritic prodrugs by catalytic antibody 38C2.
    Shamis M; Lode HN; Shabat D
    J Am Chem Soc; 2004 Feb; 126(6):1726-31. PubMed ID: 14871103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monoclonal antibodies as catalysts and templates for organic chemical reactions.
    Green BS
    Adv Biotechnol Processes; 1989; 11():359-93. PubMed ID: 2644946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prodrugs design based on inter- and intramolecular chemical processes.
    Karaman R
    Chem Biol Drug Des; 2013 Dec; 82(6):643-68. PubMed ID: 23998799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prodrug activation via catalytic antibodies.
    Miyashita H; Karaki Y; Kikuchi M; Fujii I
    Proc Natl Acad Sci U S A; 1993 Jun; 90(11):5337-40. PubMed ID: 8506382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new strategy for the generation of catalytic antibodies.
    Shokat KM; Leumann CJ; Sugasawara R; Schultz PG
    Nature; 1989 Mar; 338(6212):269-71. PubMed ID: 2922053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new visual screening assay for catalytic antibodies with retro-aldol retro-Michael activity.
    Shamis M; Barbas CF; Shabat D
    Bioorg Med Chem Lett; 2007 Mar; 17(5):1172-5. PubMed ID: 17234408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibody-directed enzyme prodrug therapy with the T268G mutant of human carboxypeptidase A1: in vitro and in vivo studies with prodrugs of methotrexate and the thymidylate synthase inhibitors GW1031 and GW1843.
    Wolfe LA; Mullin RJ; Laethem R; Blumenkopf TA; Cory M; Miller JF; Keith BR; Humphreys J; Smith GK
    Bioconjug Chem; 1999; 10(1):38-48. PubMed ID: 9893962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in antibody-directed enzyme prodrug therapy.
    Sharma SK; Bagshawe KD; Begent RH
    Curr Opin Investig Drugs; 2005 Jun; 6(6):611-5. PubMed ID: 15997480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and discovery of a novel dipeptidyl-peptidase IV (CD26)-based prodrug approach.
    García-Aparicio C; Bonache MC; De Meester I; San-Félix A; Balzarini J; Camarasa MJ; Velazquez S
    J Med Chem; 2006 Aug; 49(17):5339-51. PubMed ID: 16913724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures of human thymidylate kinase in complex with prodrugs: implications for the structure-based design of novel compounds.
    Ostermann N; Segura-Peña D; Meier C; Veit T; Monnerjahn C; Konrad M; Lavie A
    Biochemistry; 2003 Mar; 42(9):2568-77. PubMed ID: 12614151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of water-soluble prodrugs of the HIV-1 protease inhibitor KNI-727: importance of the conversion time for higher gastrointestinal absorption of prodrugs based on spontaneous chemical cleavage.
    Sohma Y; Hayashi Y; Ito T; Matsumoto H; Kimura T; Kiso Y
    J Med Chem; 2003 Sep; 46(19):4124-35. PubMed ID: 12954064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic DNA (deoxyribozymes) for synthetic applications-current abilities and future prospects.
    Silverman SK
    Chem Commun (Camb); 2008 Aug; (30):3467-85. PubMed ID: 18654692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The future of prodrugs - design by quantum mechanics methods.
    Karaman R; Fattash B; Qtait A
    Expert Opin Drug Deliv; 2013 May; 10(5):713-29. PubMed ID: 23540707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.