These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 7700148)

  • 1. Glutamine synthetase gene evolution in bacteria.
    Pesole G; Gissi C; Lanave C; Saccone C
    Mol Biol Evol; 1995 Mar; 12(2):189-97. PubMed ID: 7700148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary relationships of bacterial and archaeal glutamine synthetase genes.
    Brown JR; Masuchi Y; Robb FT; Doolittle WF
    J Mol Evol; 1994 Jun; 38(6):566-76. PubMed ID: 7916055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and sequencing of the gene encoding glutamine synthetase I from the archaeum Pyrococcus woesei: anomalous phylogenies inferred from analysis of archaeal and bacterial glutamine synthetase I sequences.
    Tiboni O; Cammarano P; Sanangelantoni AM
    J Bacteriol; 1993 May; 175(10):2961-9. PubMed ID: 8098326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular classification of living organisms.
    Saccone C; Gissi C; Lanave C; Pesole G
    J Mol Evol; 1995 Mar; 40(3):273-9. PubMed ID: 7723054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of the glutamine synthetase gene, one of the oldest existing and functioning genes.
    Kumada Y; Benson DR; Hillemann D; Hosted TJ; Rochefort DA; Thompson CJ; Wohlleben W; Tateno Y
    Proc Natl Acad Sci U S A; 1993 Apr; 90(7):3009-13. PubMed ID: 8096645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of HSP70 gene and its implications regarding relationships between archaebacteria, eubacteria, and eukaryotes.
    Gupta RS; Golding GB
    J Mol Evol; 1993 Dec; 37(6):573-82. PubMed ID: 8114110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes.
    Iwabe N; Kuma K; Hasegawa M; Osawa S; Miyata T
    Proc Natl Acad Sci U S A; 1989 Dec; 86(23):9355-9. PubMed ID: 2531898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of glutamine synthetase in heterokonts: evidence for endosymbiotic gene transfer and the early evolution of photosynthesis.
    Robertson DL; Tartar A
    Mol Biol Evol; 2006 May; 23(5):1048-55. PubMed ID: 16495348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What are archaebacteria: life's third domain or monoderm prokaryotes related to gram-positive bacteria? A new proposal for the classification of prokaryotic organisms.
    Gupta RS
    Mol Microbiol; 1998 Aug; 29(3):695-707. PubMed ID: 9723910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning and nucleotide sequence of an archaebacterial glutamine synthetase gene: phylogenetic implications.
    Sanangelantoni AM; Barbarini D; Di Pasquale G; Cammarano P; Tiboni O
    Mol Gen Genet; 1990 Apr; 221(2):187-94. PubMed ID: 1973523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular evolution of glutamine synthetase II: Phylogenetic evidence of a non-endosymbiotic gene transfer event early in plant evolution.
    Ghoshroy S; Binder M; Tartar A; Robertson DL
    BMC Evol Biol; 2010 Jun; 10():198. PubMed ID: 20579371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of glutamate dehydrogenase genes: evidence for two paralogous protein families and unusual branching patterns of the archaebacteria in the universal tree of life.
    Benachenhou-Lahfa N; Forterre P; Labedan B
    J Mol Evol; 1993 Apr; 36(4):335-46. PubMed ID: 8315654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications.
    Brown JR; Doolittle WF
    Proc Natl Acad Sci U S A; 1995 Mar; 92(7):2441-5. PubMed ID: 7708661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The glutamine synthetases of rhizobia: phylogenetics and evolutionary implications.
    Turner SL; Young JP
    Mol Biol Evol; 2000 Feb; 17(2):309-19. PubMed ID: 10677854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification.
    Cavalier-Smith T
    Int J Syst Evol Microbiol; 2002 Jan; 52(Pt 1):7-76. PubMed ID: 11837318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Close linkage of genes encoding glutamine synthetases I and II in Frankia alni CpI1.
    Hosted TJ; Rochefort DA; Benson DR
    J Bacteriol; 1993 Jun; 175(11):3679-84. PubMed ID: 8099074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning of the HSP70 gene from Halobacterium marismortui: relatedness of archaebacterial HSP70 to its eubacterial homologs and a model for the evolution of the HSP70 gene.
    Gupta RS; Singh B
    J Bacteriol; 1992 Jul; 174(14):4594-605. PubMed ID: 1624448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogenetic analysis of 70 kD heat shock protein sequences suggests a chimeric origin for the eukaryotic cell nucleus.
    Gupta RS; Singh B
    Curr Biol; 1994 Dec; 4(12):1104-14. PubMed ID: 7704574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life's third domain (Archaea): an established fact or an endangered paradigm?
    Gupta RS
    Theor Popul Biol; 1998 Oct; 54(2):91-104. PubMed ID: 9733652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The presence of GSI-like genes in higher plants: support for the paralogous evolution of GSI and GSII genes.
    Mathis R; Gamas P; Meyer Y; Cullimore JV
    J Mol Evol; 2000 Feb; 50(2):116-22. PubMed ID: 10684345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.