These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 7700148)
21. Bayesian phylogenetic analysis reveals two-domain topology of S-adenosylhomocysteine hydrolase protein sequences. Stepkowski T; Brzeziński K; Legocki AB; Jaskólski M; Béna G Mol Phylogenet Evol; 2005 Jan; 34(1):15-28. PubMed ID: 15579379 [TBL] [Abstract][Full Text] [Related]
22. Glutamine synthetase gene evolution: a good molecular clock. Pesole G; Bozzetti MP; Lanave C; Preparata G; Saccone C Proc Natl Acad Sci U S A; 1991 Jan; 88(2):522-6. PubMed ID: 1671172 [TBL] [Abstract][Full Text] [Related]
23. Molecular analysis of a novel glutamine synthetase of the anaerobe Bacteroides fragilis. Hill RT; Parker JR; Goodman HJ; Jones DT; Woods DR J Gen Microbiol; 1989 Dec; 135(12):3271-9. PubMed ID: 2576872 [TBL] [Abstract][Full Text] [Related]
24. The evolutionary significance of the Archaebacteria. Doolittle WF Ann N Y Acad Sci; 1987; 503():72-7. PubMed ID: 2441638 [No Abstract] [Full Text] [Related]
25. Sequence of the 16S rRNA gene from the thermoacidophilic archaebacterium Sulfolobus solfataricus and its evolutionary implications. Olsen GJ; Pace NR; Nuell M; Kaine BP; Gupta R; Woese CR J Mol Evol; 1985; 22(4):301-7. PubMed ID: 3936935 [TBL] [Abstract][Full Text] [Related]
26. Paths of lateral gene transfer of lysyl-aminoacyl-tRNA synthetases with a unique evolutionary transition stage of prokaryotes coding for class I and II varieties by the same organisms. Shaul S; Nussinov R; Pupko T BMC Evol Biol; 2006 Mar; 6():22. PubMed ID: 16529662 [TBL] [Abstract][Full Text] [Related]
27. Molecular phylogenetics of DNA 5mC-methyltransferases. Bujnicki JM; Radlinska M Acta Microbiol Pol; 1999; 48(1):19-30. PubMed ID: 10467693 [TBL] [Abstract][Full Text] [Related]
28. The phylogenetic relations of DNA-dependent RNA polymerases of archaebacteria, eukaryotes, and eubacteria. Zillig W; Klenk HP; Palm P; Pühler G; Gropp F; Garrett RA; Leffers H Can J Microbiol; 1989 Jan; 35(1):73-80. PubMed ID: 2541879 [TBL] [Abstract][Full Text] [Related]
30. Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Gupta RS Microbiol Mol Biol Rev; 1998 Dec; 62(4):1435-91. PubMed ID: 9841678 [TBL] [Abstract][Full Text] [Related]
31. Molecular evolution of H+-ATPases. I. Methanococcus and Sulfolobus are monophyletic with respect to eukaryotes and Eubacteria. Gogarten JP; Rausch T; Bernasconi P; Kibak H; Taiz L Z Naturforsch C J Biosci; 1989; 44(7-8):641-50. PubMed ID: 2528356 [TBL] [Abstract][Full Text] [Related]
32. Evolution of large subunit rRNA structure. The 3' terminal domain contains elements of secondary structure specific to major phylogenetic groups. Bachellerie JP; Michot B Biochimie; 1989 Jun; 71(6):701-9. PubMed ID: 2502186 [TBL] [Abstract][Full Text] [Related]
33. Glutamine synthetase II in Rhizobium: reexamination of the proposed horizontal transfer of DNA from eukaryotes to prokaryotes. Shatters RG; Kahn ML J Mol Evol; 1989 Nov; 29(5):422-8. PubMed ID: 2575672 [TBL] [Abstract][Full Text] [Related]
34. Recent developments on the regulation and structure of glutamine synthetase enzymes from selected bacterial groups. Woods DR; Reid SJ FEMS Microbiol Rev; 1993 Aug; 11(4):273-83. PubMed ID: 7691113 [TBL] [Abstract][Full Text] [Related]
35. Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. Klein M; Friedrich M; Roger AJ; Hugenholtz P; Fishbain S; Abicht H; Blackall LL; Stahl DA; Wagner M J Bacteriol; 2001 Oct; 183(20):6028-35. PubMed ID: 11567003 [TBL] [Abstract][Full Text] [Related]
36. Ribosome evolution: the structural bases of protein synthesis in archaebacteria, eubacteria, and eukaryotes. Lake JA Prog Nucleic Acid Res Mol Biol; 1983; 30():163-94. PubMed ID: 6420842 [No Abstract] [Full Text] [Related]
37. Protein phylogenies and signature sequences: evolutionary relationships within prokaryotes and between prokaryotes and eukaryotes. Gupta RS Antonie Van Leeuwenhoek; 1997 Jul; 72(1):49-61. PubMed ID: 9296263 [TBL] [Abstract][Full Text] [Related]
38. Archaeal roots of intramembrane aspartyl protease siblings signal peptide peptidase and presenilin. Raut P; Glass JB; Lieberman RL Proteins; 2021 Feb; 89(2):232-241. PubMed ID: 32935885 [TBL] [Abstract][Full Text] [Related]
39. Universal trees based on large combined protein sequence data sets. Brown JR; Douady CJ; Italia MJ; Marshall WE; Stanhope MJ Nat Genet; 2001 Jul; 28(3):281-5. PubMed ID: 11431701 [TBL] [Abstract][Full Text] [Related]
40. Homologs of eukaryotic Ras superfamily proteins in prokaryotes and their novel phylogenetic correlation with their eukaryotic analogs. Dong JH; Wen JF; Tian HF Gene; 2007 Jul; 396(1):116-24. PubMed ID: 17449198 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]