These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 7700201)
1. Quantitation of grey matter, white matter, and cerebrospinal fluid from spin-echo magnetic resonance images using an artificial neural network technique. Raff U; Scherzinger AL; Vargas PF; Simon JH Med Phys; 1994 Dec; 21(12):1933-42. PubMed ID: 7700201 [TBL] [Abstract][Full Text] [Related]
2. Segmentation of magnetic resonance images using an artificial neural network. Piraino DW; Amartur SC; Richmond BJ; Schils JP; Thome JM; Weber PB Proc Annu Symp Comput Appl Med Care; 1991; ():470-2. PubMed ID: 1807645 [TBL] [Abstract][Full Text] [Related]
4. Advantages of fluid and white matter suppression (FLAWS) with MP2RAGE compared with double inversion recovery turbo spin echo (DIR-TSE) at 7T. Urushibata Y; Kuribayashi H; Fujimoto K; Kober T; Grinstead JW; Isa T; Okada T Eur J Radiol; 2019 Jul; 116():160-164. PubMed ID: 31153559 [TBL] [Abstract][Full Text] [Related]
5. Automated patient-specific optimization of three-dimensional double-inversion recovery magnetic resonance imaging. Gabr RE; Sun X; Pednekar AS; Narayana PA Magn Reson Med; 2016 Feb; 75(2):585-93. PubMed ID: 25761973 [TBL] [Abstract][Full Text] [Related]
6. A reliable spatially normalized template of the human spinal cord--Applications to automated white matter/gray matter segmentation and tensor-based morphometry (TBM) mapping of gray matter alterations occurring with age. Taso M; Le Troter A; Sdika M; Cohen-Adad J; Arnoux PJ; Guye M; Ranjeva JP; Callot V Neuroimage; 2015 Aug; 117():20-8. PubMed ID: 26003856 [TBL] [Abstract][Full Text] [Related]
7. Hybrid artificial neural network segmentation of precise and accurate inversion recovery (PAIR) images from normal human brain. Glass JO; Reddick WE; Goloubeva O; Yo V; Steen RG Magn Reson Imaging; 2000 Dec; 18(10):1245-53. PubMed ID: 11167044 [TBL] [Abstract][Full Text] [Related]
8. Automatic segmentation of MR brain images of preterm infants using supervised classification. Moeskops P; Benders MJ; Chiţ SM; Kersbergen KJ; Groenendaal F; de Vries LS; Viergever MA; Išgum I Neuroimage; 2015 Sep; 118():628-41. PubMed ID: 26057591 [TBL] [Abstract][Full Text] [Related]
9. Age-related total gray matter and white matter changes in normal adult brain. Part I: volumetric MR imaging analysis. Ge Y; Grossman RI; Babb JS; Rabin ML; Mannon LJ; Kolson DL AJNR Am J Neuroradiol; 2002 Sep; 23(8):1327-33. PubMed ID: 12223373 [TBL] [Abstract][Full Text] [Related]
10. A voxel-based morphometry comparison of the 3.0T ADNI-1 and ADNI-2 volumetric MRI protocols. Brunton S; Gunasinghe C; Jones N; Kempton MJ; Westman E; Simmons A Int J Geriatr Psychiatry; 2015 May; 30(5):531-8. PubMed ID: 25092796 [TBL] [Abstract][Full Text] [Related]
11. Feasibility of grey matter and white matter segmentation of the upper cervical cord in vivo: a pilot study with application to magnetisation transfer measurements. Yiannakas MC; Kearney H; Samson RS; Chard DT; Ciccarelli O; Miller DH; Wheeler-Kingshott CA Neuroimage; 2012 Nov; 63(3):1054-9. PubMed ID: 22850571 [TBL] [Abstract][Full Text] [Related]
12. Mathematical segmentation of grey matter, white matter and cerebral spinal fluid from MR image pairs. Thacker NA; Jackson A Br J Radiol; 2001 Mar; 74(879):234-42. PubMed ID: 11338099 [TBL] [Abstract][Full Text] [Related]
13. Improving tissue classification in MRI: a three-dimensional multispectral discriminant analysis method with automated training class selection. Harris G; Andreasen NC; Cizadlo T; Bailey JM; Bockholt HJ; Magnotta VA; Arndt S J Comput Assist Tomogr; 1999; 23(1):144-54. PubMed ID: 10050826 [TBL] [Abstract][Full Text] [Related]
14. Diffusion tensor imaging-based tissue segmentation: validation and application to the developing child and adolescent brain. Hasan KM; Halphen C; Sankar A; Eluvathingal TJ; Kramer L; Stuebing KK; Ewing-Cobbs L; Fletcher JM Neuroimage; 2007 Feb; 34(4):1497-505. PubMed ID: 17166746 [TBL] [Abstract][Full Text] [Related]
15. Segmentation of MR brain images into cerebrospinal fluid spaces, white and gray matter. Lim KO; Pfefferbaum A J Comput Assist Tomogr; 1989; 13(4):588-93. PubMed ID: 2745775 [TBL] [Abstract][Full Text] [Related]
16. Dirty-Appearing White Matter in the Brain is Associated with Altered Cerebrospinal Fluid Pulsatility and Hypertension in Individuals without Neurologic Disease. Beggs CB; Magnano C; Shepherd SJ; Belov P; Ramasamy DP; Hagemeier J; Zivadinov R J Neuroimaging; 2016; 26(1):136-43. PubMed ID: 25893376 [TBL] [Abstract][Full Text] [Related]
17. An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network. Amiri S; Movahedi MM; Kazemi K; Parsaei H J Biomed Phys Eng; 2013 Dec; 3(4):115-22. PubMed ID: 25505757 [TBL] [Abstract][Full Text] [Related]
18. T1-weighted fluid-attenuated inversion recovery and T1-weighted fast spin-echo contrast-enhanced imaging: a comparison in 20 patients with brain lesions. Al-Saeed O; Ismail M; Athyal RP; Rudwan M; Khafajee S J Med Imaging Radiat Oncol; 2009 Aug; 53(4):366-72. PubMed ID: 19695043 [TBL] [Abstract][Full Text] [Related]
19. 76-space analysis of grey matter diffusivity: methods and applications. Liu T; Young G; Huang L; Chen NK; Wong ST Neuroimage; 2006 May; 31(1):51-65. PubMed ID: 16434215 [TBL] [Abstract][Full Text] [Related]
20. Fully automatic detection of deep white matter T1 hypointense lesions in multiple sclerosis. Spies L; Tewes A; Suppa P; Opfer R; Buchert R; Winkler G; Raji A Phys Med Biol; 2013 Dec; 58(23):8323-37. PubMed ID: 24216694 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]