These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 7701057)

  • 21. Kinetic analysis of GM1 effects on haloperidol-induced dopaminergic supersensitivity.
    Palermo-Neto J; Frussa-Filho R; Vital MA
    Gen Pharmacol; 1999 Feb; 32(2):265-70. PubMed ID: 10188630
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Parallels between behavioral and neurochemical variability in the rat vacuous chewing movement model of tardive dyskinesia.
    Bachus SE; Yang E; McCloskey SS; Minton JN
    Behav Brain Res; 2012 Jun; 231(2):323-36. PubMed ID: 22503783
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oral dyskinesias and morphological changes in rat striatum during long-term haloperidol administration.
    Andreassen OA; Meshul CK; Moore C; Jørgensen HA
    Psychopharmacology (Berl); 2001 Aug; 157(1):11-9. PubMed ID: 11512038
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Central administration of the neurotensin receptor antagonist SR48692 attenuates vacuous chewing movements in a rodent model of tardive dyskinesia.
    McCormick SE; Stoessl AJ
    Neuroscience; 2003; 119(2):547-55. PubMed ID: 12770567
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Autoradiographic mapping of mu opioid receptor changes in rat brain after long-term haloperidol treatment: relationship to the development of vacuous chewing movements.
    Sasaki T; Kennedy JL; Nobrega JN
    Psychopharmacology (Berl); 1996 Nov; 128(1):97-104. PubMed ID: 8944412
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ameliorative effect of yokukansan on vacuous chewing movement in haloperidol-induced rat tardive dyskinesia model and involvement of glutamatergic system.
    Sekiguchi K; Kanno H; Yamaguchi T; Ikarashi Y; Kase Y
    Brain Res Bull; 2012 Dec; 89(5-6):151-8. PubMed ID: 22982367
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Localized changes in GABA receptor-gated chloride channel in rat brain after long-term haloperidol: relation to vacuous chewing movements.
    Sasaki T; Kennedy JL; Nobrega JN
    Synapse; 1997 Jan; 25(1):73-9. PubMed ID: 8987150
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The mitochondrial toxin 3-nitropropionic acid induces vacuous chewing movements in rats. Implications for tardive dyskinesia?
    Andreassen OA; Jørgensen HA
    Psychopharmacology (Berl); 1995 Jun; 119(4):474-6. PubMed ID: 7480528
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pro-Leu-glycinamide and its peptidomimetic, PAOPA, attenuate haloperidol induced vacuous chewing movements in rat: A model of human tardive dyskinesia.
    Sharma S; Paladino P; Gabriele J; Saeedi H; Henry P; Chang M; Mishra RK; Johnson RL
    Peptides; 2003 Feb; 24(2):313-9. PubMed ID: 12668218
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electron spin resonance spectroscopy reveals alpha-phenyl-N-tert-butylnitrone spin-traps free radicals in rat striatum and prevents haloperidol-induced vacuous chewing movements in the rat model of human tardive dyskinesia.
    Rogoza RM; Fairfax DF; Henry P; N-Marandi S; Khan RF; Gupta SK; Mishra RK
    Synapse; 2004 Dec; 54(3):156-63. PubMed ID: 15452862
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Persistent catalepsy associated with severe dyskinesias in rats treated with chronic injections of haloperidol decanoate.
    Hyde TM; Egan MF; Wing LL; Wyatt RJ; Weinberger DR; Kleinman JE
    Psychopharmacology (Berl); 1995 Mar; 118(2):142-9. PubMed ID: 7617800
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of striatal glutamatergic system in haloperidol-induced dopamine receptor supersensitivity and effects of monosialoganglioside GM1.
    Schroeder H; Schroeder U; Sabel BA
    Pharmacol Biochem Behav; 1997 Dec; 58(4):903-7. PubMed ID: 9408194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of rating parameters on assessment of neuroleptic-induced vacuous chewing movements.
    Egan MF; Ferguson J; Hyde TM
    Pharmacol Biochem Behav; 1996 Feb; 53(2):401-10. PubMed ID: 8808150
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of haloperidol and GM1 ganglioside treatment on striatal D2 receptor binding and dopamine turnover.
    Vital MA; Flório JC; Frussa-Filho R; De Lucia R; Tufik S; Palermo-Neto J
    Life Sci; 1998; 62(13):1161-9. PubMed ID: 9519797
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lipoic acid and haloperidol-induced vacuous chewing movements: Implications for prophylactic antioxidant use in tardive dyskinesia.
    Lister J; Andreazza AC; Navaid B; Wilson VS; Teo C; Nesarajah Y; Wilson AA; Nobrega JN; Fletcher PJ; Remington G
    Prog Neuropsychopharmacol Biol Psychiatry; 2017 Jan; 72():23-29. PubMed ID: 27565433
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protective effect of Curcumin, the active principle of turmeric (Curcuma longa) in haloperidol-induced orofacial dyskinesia and associated behavioural, biochemical and neurochemical changes in rat brain.
    Bishnoi M; Chopra K; Kulkarni SK
    Pharmacol Biochem Behav; 2008 Feb; 88(4):511-22. PubMed ID: 18022680
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vacuous jaw movements induced by sub-chronic administration of haloperidol: interactions with scopolamine.
    Steinpreis RE; Baskin P; Salamone JD
    Psychopharmacology (Berl); 1993; 111(1):99-105. PubMed ID: 7870941
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Suppression of haloperidol-induced oral dyskinesias in rats by vigabatrin.
    Seiler N; Grauffel C; Elands J; van den Buuse M; Knödgen B; Sarhan S; Moran P; Gobaille S
    Pharmacol Biochem Behav; 1995 Feb; 50(2):181-9. PubMed ID: 7740056
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pharmacological and neurochemical differences between acute and tardive vacuous chewing movements induced by haloperidol.
    Egan MF; Hurd Y; Ferguson J; Bachus SE; Hamid EH; Hyde TM
    Psychopharmacology (Berl); 1996 Oct; 127(4):337-45. PubMed ID: 8923569
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monosialoganglioside cotreatment prevents haloperidol treatment-associated loss of cholinergic enzymes in rat brain.
    Mahadik SP; Mukherjee S
    Biol Psychiatry; 1995 Aug; 38(4):246-54. PubMed ID: 8547447
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.