These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 7701140)

  • 41. Development of a dry reagent-based triplex PCR for the detection of toxigenic and non-toxigenic Vibrio cholerae.
    Chua AL; Elina HT; Lim BH; Yean CY; Ravichandran M; Lalitha P
    J Med Microbiol; 2011 Apr; 60(Pt 4):481-485. PubMed ID: 21183596
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of Vibrio cholerae isolated from oysters.
    Twedt RM; Madden JM; Hunt JM; Francis DW; Peeler JT; Duran AP; Hebert WO; McCay SG; Roderick CN; Spite GT; Wazenski TJ
    Appl Environ Microbiol; 1981 Jun; 41(6):1475-8. PubMed ID: 7247399
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Real-time PCR and NASBA for rapid and sensitive detection of Vibrio cholerae in ballast water.
    Fykse EM; Nilsen T; Nielsen AD; Tryland I; Delacroix S; Blatny JM
    Mar Pollut Bull; 2012 Feb; 64(2):200-6. PubMed ID: 22221710
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Detection of toxigenic Vibrio cholerae 01 using polymerase chain reaction.
    Bravo L; Monte RJ; Ramirez M; Maestre JL; Llop A; Barro M; Morales J
    Mem Inst Oswaldo Cruz; 1992; 87(3):443-4. PubMed ID: 1343655
    [No Abstract]   [Full Text] [Related]  

  • 45. Specific detection of toxigenic vibrio cholerae based on in situ PCR in combination with flow cytometry.
    Zhu L; Cai JP; Chen Q; Yu SY
    Biomed Environ Sci; 2007 Feb; 20(1):64-9. PubMed ID: 17458144
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Direct detection of Vibrio cholerae in stool samples.
    Varela P; Pollevick GD; Rivas M; Chinen I; Binsztein N; Frasch AC; Ugalde RA
    J Clin Microbiol; 1994 May; 32(5):1246-8. PubMed ID: 8051251
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Polymerase chain reaction identification of Vibrio vulnificus in artificially contaminated oysters.
    Hill WE; Keasler SP; Trucksess MW; Feng P; Kaysner CA; Lampel KA
    Appl Environ Microbiol; 1991 Mar; 57(3):707-11. PubMed ID: 2039231
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Elevated temperature method for recovery of Vibrio cholerae from oysters (Crassostrea gigas).
    DePaola A; Kaysner CA; McPhearson RM
    Appl Environ Microbiol; 1987 May; 53(5):1181-2. PubMed ID: 3606095
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Successful application of enzyme-labeled oligonucleotide probe for rapid and accurate cholera diagnosis in a clinical laboratory.
    Miyagi K; Matsumoto Y; Hayashi K; Yoh M; Yamamoto K; Honda T
    Microbiol Immunol; 1994; 38(4):301-4. PubMed ID: 7935049
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A novel triplex quantitative PCR strategy for quantification of toxigenic and nontoxigenic Vibrio cholerae in aquatic environments.
    Bliem R; Schauer S; Plicka H; Obwaller A; Sommer R; Steinrigl A; Alam M; Reischer GH; Farnleitner AH; Kirschner A
    Appl Environ Microbiol; 2015 May; 81(9):3077-85. PubMed ID: 25724966
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Vibrio cholerae and enteric bacteria in oyster-producing areas of two urban estuaries in Australia.
    Eyles MJ; Davey GR
    Int J Food Microbiol; 1988 May; 6(3):207-18. PubMed ID: 3079469
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Toxigenic Vibrio cholerae O1 infection acquired in Colorado.
    Centers for Disease Control (CDC)
    MMWR Morb Mortal Wkly Rep; 1989 Jan; 38(2):19-20. PubMed ID: 2491910
    [No Abstract]   [Full Text] [Related]  

  • 53. Rapid detection of the Vibrio cholerae ctx gene in food enrichments using real-time polymerase chain reaction.
    Fedio W; Blackstone GM; Kikuta-Oshima L; Wendakoon C; McGrath TH; DePaola A
    J AOAC Int; 2007; 90(5):1278-83. PubMed ID: 17955973
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Uptake and retention of Vibrio cholerae O1 in the Eastern oyster, Crassostrea virginica.
    Murphree RL; Tamplin ML
    Appl Environ Microbiol; 1995 Oct; 61(10):3656-60. PubMed ID: 7487003
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Semi-nested polymerase chain reaction for detection of toxigenic Vibrio cholerae from environmental water samples.
    Goel AK; Bhadauria S; Kumar P; Kamboj DV; Singh L
    Indian J Microbiol; 2007 Sep; 47(3):207-11. PubMed ID: 23100668
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Isolation of Vibrio cholerae serotype O1 from the eastern oyster, Crassostrea virginica.
    Hood MA; Ness GE; Rodrick GE
    Appl Environ Microbiol; 1981 Feb; 41(2):559-60. PubMed ID: 7235700
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Detection of viable Vibrio cholerae by reverse-transcriptase polymerase chain reaction (RT-PCR).
    Bej AK; Ng WY; Morgan S; Jones DD; Mahbubani MH
    Mol Biotechnol; 1996 Feb; 5(1):1-10. PubMed ID: 8853011
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantitative Analysis of Nucleic Acid Extraction Methods for Vibrio cholerae Using Real-time PCR and Conventional PCR.
    Hossain ZZ; Ferdous J; Tulsiani SM; Jensen PM; Begum A
    Mymensingh Med J; 2018 Apr; 27(2):327-335. PubMed ID: 29769498
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Survival of Salmonella typhi in oysters.
    Nishio T; Nakamori J; Miyazaki K
    Zentralbl Bakteriol Mikrobiol Hyg B; 1981 Jan; 172(4-5):415-26. PubMed ID: 7223143
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Radiosensitivity of Vibrio cholerae O1 incorporated in oysters, to (60)CO].
    de Moraes IR; Del Mastro NL; Jakabi M; Gelli DS
    Rev Saude Publica; 2000 Feb; 34(1):29-32. PubMed ID: 10769357
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.