These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 7701322)

  • 41. Alternative pathways for editing non-cognate amino acids by aminoacyl-tRNA synthetases.
    Jakubowski H; Fersht AR
    Nucleic Acids Res; 1981 Jul; 9(13):3105-17. PubMed ID: 7024910
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lysine 335, part of the KMSKS signature sequence, plays a crucial role in the amino acid activation catalysed by the methionyl-tRNA synthetase from Escherichia coli.
    Mechulam Y; Dardel F; Le Corre D; Blanquet S; Fayat G
    J Mol Biol; 1991 Feb; 217(3):465-75. PubMed ID: 1847216
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Residues in a class I tRNA synthetase which determine selectivity of amino acid recognition in the context of tRNA.
    Schmidt E; Schimmel P
    Biochemistry; 1995 Sep; 34(35):11204-10. PubMed ID: 7669778
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Anticodon loop size and sequence requirements for recognition of formylmethionine tRNA by methionyl-tRNA synthetase.
    Schulman LH; Pelka H
    Proc Natl Acad Sci U S A; 1983 Nov; 80(22):6755-9. PubMed ID: 6359155
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Human cytoplasmic isoleucyl-tRNA synthetase: selective divergence of the anticodon-binding domain and acquisition of a new structural unit.
    Shiba K; Suzuki N; Shigesada K; Namba Y; Schimmel P; Noda T
    Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7435-9. PubMed ID: 8052601
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of potential amino acid residues supporting anticodon recognition in yeast methionyl-tRNA synthetase.
    Despons L; Walter P; Senger B; Ebel JP; Fasiolo F
    FEBS Lett; 1991 Sep; 289(2):217-20. PubMed ID: 1915850
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role for a conserved structural motif in assembly of a class I aminoacyl-tRNA synthetase active site.
    Casina VC; Lobashevsky AA; McKinney WE; Brown CL; Alexander RW
    Biochemistry; 2011 Feb; 50(5):763-9. PubMed ID: 21175197
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Convergent evolution of two different random RNAs for specific interaction with methionyl-tRNA synthetase.
    Kang T; Kim G; Park SG; Jo YJ
    Biochem Biophys Res Commun; 2013 Mar; 432(2):281-6. PubMed ID: 23399565
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Activation of methionine by Escherichia coli methionyl-tRNA synthetase.
    Ghosh G; Pelka H; Schulman LH; Brunie S
    Biochemistry; 1991 Oct; 30(40):9569-75. PubMed ID: 1911742
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mutational isolation of a sieve for editing in a transfer RNA synthetase.
    Schmidt E; Schimmel P
    Science; 1994 Apr; 264(5156):265-7. PubMed ID: 8146659
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Insights into editing from an ile-tRNA synthetase structure with tRNAile and mupirocin.
    Silvian LF; Wang J; Steitz TA
    Science; 1999 Aug; 285(5430):1074-7. PubMed ID: 10446055
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Homology of yeast mitochondrial leucyl-tRNA synthetase and isoleucyl- and methionyl-tRNA synthetases of Escherichia coli.
    Tzagoloff A; Akai A; Kurkulos M; Repetto B
    J Biol Chem; 1988 Jan; 263(2):850-6. PubMed ID: 2826465
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural basis for substrate recognition by the editing domain of isoleucyl-tRNA synthetase.
    Fukunaga R; Yokoyama S
    J Mol Biol; 2006 Jun; 359(4):901-12. PubMed ID: 16697013
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An anticodon change switches the identity of E. coli tRNA(mMet) from methionine to threonine.
    Schulman LH; Pelka H
    Nucleic Acids Res; 1990 Jan; 18(2):285-9. PubMed ID: 2109304
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanism of aminoacylation of tRNA. Proof of the aminoacyl adenylate pathway for the isoleucyl- and tyrosyl-tRNA synthetases from Escherichia coli K12.
    Fersht AR; Kaethner MM
    Biochemistry; 1976 Feb; 15(4):818-23. PubMed ID: 764868
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Recognition of tRNA
    Uesugi G; Fukuba Y; Yamamoto T; Inaba N; Furukawa H; Yoshizawa S; Tomikawa C; Takai K
    FEBS J; 2022 Aug; 289(16):4888-4900. PubMed ID: 35122395
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nonprotein amino acid furanomycin, unlike isoleucine in chemical structure, is charged to isoleucine tRNA by isoleucyl-tRNA synthetase and incorporated into protein.
    Kohno T; Kohda D; Haruki M; Yokoyama S; Miyazawa T
    J Biol Chem; 1990 Apr; 265(12):6931-5. PubMed ID: 2182633
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structural similarities in glutaminyl- and methionyl-tRNA synthetases suggest a common overall orientation of tRNA binding.
    Perona JJ; Rould MA; Steitz TA; Risler JL; Zelwer C; Brunie S
    Proc Natl Acad Sci U S A; 1991 Apr; 88(7):2903-7. PubMed ID: 2011598
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Yeast cytoplasmic and mitochondrial methionyl-tRNA synthetases: two structural frameworks for identical functions.
    Senger B; Despons L; Walter P; Jakubowski H; Fasiolo F
    J Mol Biol; 2001 Aug; 311(1):205-16. PubMed ID: 11469869
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A eubacterial Mycobacterium tuberculosis tRNA synthetase is eukaryote-like and resistant to a eubacterial-specific antisynthetase drug.
    Sassanfar M; Kranz JE; Gallant P; Schimmel P; Shiba K
    Biochemistry; 1996 Aug; 35(31):9995-10003. PubMed ID: 8756461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.