These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 7701346)

  • 21. Springs for wings.
    Alexander RM
    Science; 1995 Apr; 268(5207):50-1. PubMed ID: 7701341
    [No Abstract]   [Full Text] [Related]  

  • 22. Work loop dynamics of the pigeon (
    Theriault JS; Bahlman JW; Shadwick RE; Altshuler DL
    J Exp Biol; 2019 Apr; 222(Pt 7):. PubMed ID: 30890622
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elastic deformation and energy loss of flapping fly wings.
    Lehmann FO; Gorb S; Nasir N; Schützner P
    J Exp Biol; 2011 Sep; 214(Pt 17):2949-61. PubMed ID: 21832138
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The changes in power requirements and muscle efficiency during elevated force production in the fruit fly Drosophila melanogaster.
    Lehmann FO; Dickinson MH
    J Exp Biol; 1997 Apr; 200(Pt 7):1133-43. PubMed ID: 9131808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel flight style and light wings boost flight performance of tiny beetles.
    Farisenkov SE; Kolomenskiy D; Petrov PN; Engels T; Lapina NA; Lehmann FO; Onishi R; Liu H; Polilov AA
    Nature; 2022 Feb; 602(7895):96-100. PubMed ID: 35046578
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Power and efficiency of insect flight muscle.
    Ellington CP
    J Exp Biol; 1985 Mar; 115():293-304. PubMed ID: 4031771
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermoregulation in endothermic insects.
    Heinrich B
    Science; 1974 Aug; 185(4153):747-56. PubMed ID: 4602075
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting power-optimal kinematics of avian wings.
    Parslew B
    J R Soc Interface; 2015 Jan; 12(102):20140953. PubMed ID: 25392398
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unconventional mechanisms control cyclic respiratory gas release in flying Drosophila.
    Lehmann FO; Heymann N
    J Exp Biol; 2005 Oct; 208(Pt 19):3645-54. PubMed ID: 16169942
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Into thin air: Contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta.
    Combes SA; Daniel TL
    J Exp Biol; 2003 Sep; 206(Pt 17):2999-3006. PubMed ID: 12878668
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An experimental comparative study of the efficiency of twisted and flat flapping wings during hovering flight.
    Phan HV; Truong QT; Park HC
    Bioinspir Biomim; 2017 Apr; 12(3):036009. PubMed ID: 28281465
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Asymmetries in wing inertial and aerodynamic torques contribute to steering in flying insects.
    Jankauski M; Daniel TL; Shen IY
    Bioinspir Biomim; 2017 Jun; 12(4):046001. PubMed ID: 28474606
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The significance of spiracle conductance and spatial arrangement for flight muscle function and aerodynamic performance in flying Drosophila.
    Heymann N; Lehmann FO
    J Exp Biol; 2006 May; 209(Pt 9):1662-77. PubMed ID: 16621947
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hovering flight mechanics of neotropical flower bats (Phyllostomidae: Glossophaginae) in normodense and hypodense gas mixtures.
    Dudley R; Winter Y
    J Exp Biol; 2002 Dec; 205(Pt 23):3669-77. PubMed ID: 12409493
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Asymmetry costs: effects of wing damage on hovering flight performance in the hawkmoth
    Fernández MJ; Driver ME; Hedrick TL
    J Exp Biol; 2017 Oct; 220(Pt 20):3649-3656. PubMed ID: 28794226
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Wingbeat kinematics and energetics during weightlifting in hovering hummingbirds across an elevational gradient.
    Groom DJ; Toledo MC; Welch KC
    J Comp Physiol B; 2017 Jan; 187(1):165-182. PubMed ID: 27431590
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution of avian flight: muscles and constraints on performance.
    Tobalske BW
    Philos Trans R Soc Lond B Biol Sci; 2016 Sep; 371(1704):. PubMed ID: 27528773
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Beyond the vertebrates: achieving maximum power during flight in insects and hummingbirds.
    Wells DJ; Ellington CP
    Adv Vet Sci Comp Med; 1994; 38B():219-32. PubMed ID: 7810379
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic power, mechanical power and efficiency during wind tunnel flight by the European starling Sturnus vulgaris.
    Ward S; Möller U; Rayner JM; Jackson DM; Bilo D; Nachtigall W; Speakman JR
    J Exp Biol; 2001 Oct; 204(Pt 19):3311-22. PubMed ID: 11606605
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds.
    Hedrick TL; Usherwood JR; Biewener AA
    J Exp Biol; 2004 Apr; 207(Pt 10):1689-702. PubMed ID: 15073202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.