BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 770167)

  • 1. Specific irreversible inhibition of enzymes concomitant to the oxidation of carbanionic enzyme-substrate intermediates by hexacyanoferrate (III).
    Christen P; Cogoli-Greuter M; Healy MJ; Lubini D
    Eur J Biochem; 1976 Mar; 63(1):223-31. PubMed ID: 770167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of the carbanion intermediate of transaldolase by hexacyanoferrate (III).
    Christen P; Gasser A
    J Biol Chem; 1976 Jul; 251(14):4220-3. PubMed ID: 776982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of glycolate by oxidation of the 1,2-dihydroxyethyl-thamin-diphosphate intermediate of transketolase with hexacyanoferrate(III) or H2O2.
    Christen P; Gasser A
    Eur J Biochem; 1980; 107(1):73-7. PubMed ID: 6995116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Irreversible inactivation of pyruvate decarboxylase in the presence of substrate and an oxidant. An example of paracatalytic enzyme inactivation.
    Cogoli-Greuter M; Hausner U; Christen P
    Eur J Biochem; 1979 Oct; 100(1):295-300. PubMed ID: 385313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paracatalytic self-inactivation of fructose-1,6-bisphosphate aldolase. Structure of the crosslink formed at the active site.
    Gupta S; Hollenstein R; Kochhar S; Christen P
    Eur J Biochem; 1993 Jun; 214(2):515-9. PubMed ID: 8513801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of arginine 331 as an important active site residue in the class II fructose-1,6-bisphosphate aldolase of Escherichia coli.
    Qamar S; Marsh K; Berry A
    Protein Sci; 1996 Jan; 5(1):154-61. PubMed ID: 8771208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paracatalytic modification of aldolase: a side reaction of the catalytic cycle resulting in irreversible blocking of two active-site lysyl residues.
    Lubini DG; Christen P
    Proc Natl Acad Sci U S A; 1979 Jun; 76(6):2527-31. PubMed ID: 288042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sweet siblings with different faces: the mechanisms of FBP and F6P aldolase, transaldolase, transketolase and phosphoketolase revisited in light of recent structural data.
    Tittmann K
    Bioorg Chem; 2014 Dec; 57():263-280. PubMed ID: 25267444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suicide inactivation of fructose-1,6-bisphosphate aldolase.
    Magnien A; Le Clef B; Biellmann JF
    Biochemistry; 1984 Dec; 23(26):6858-62. PubMed ID: 6529585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Snapshots of catalysis: the structure of fructose-1,6-(bis)phosphate aldolase covalently bound to the substrate dihydroxyacetone phosphate.
    Choi KH; Shi J; Hopkins CE; Tolan DR; Allen KN
    Biochemistry; 2001 Nov; 40(46):13868-75. PubMed ID: 11705376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fructose 1,6-diphosphate aldolase from rabbit muscle. Effect of pH on the rate of formation and on the equilibrium concentration of the carbanion intermediate.
    Grazi E
    Biochem J; 1975 Oct; 151(1):167-72. PubMed ID: 2160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle aldolase: the stress-dependent modification of catalytic and structural properties by rat muscle lysosomal cathepsin B.
    Pote MS; Altekar W
    Biochim Biophys Acta; 1981 Oct; 661(2):303-14. PubMed ID: 7295740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow reversible inhibition of rabbit muscle aldolase by D-erythrulose 1-phosphate.
    Ferroni EL; Harper ET; Fife WK
    Biochem Biophys Res Commun; 1991 Apr; 176(1):511-6. PubMed ID: 2018538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphate ion inactivation of rabbit skeletal muscle aldolase in the crystalline state.
    Sygusch J; Beaudry D
    Biochem Biophys Res Commun; 1985 Apr; 128(1):417-23. PubMed ID: 3985979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooperative effect of fructose bisphosphate and glyceraldehyde-3-phosphate dehydrogenase on aldolase action.
    Neuzil J; Danielson H; Welch GR; Ovádi J
    Biochim Biophys Acta; 1990 Mar; 1037(3):307-12. PubMed ID: 2106914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring substrate binding and discrimination in fructose1, 6-bisphosphate and tagatose 1,6-bisphosphate aldolases.
    Zgiby SM; Thomson GJ; Qamar S; Berry A
    Eur J Biochem; 2000 Mar; 267(6):1858-68. PubMed ID: 10712619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exchange reactions catalyzed by group-transferring enzymes oppose the quantitation and the unravelling of the identify of the pentose pathway.
    Flanigan I; Collins JG; Arora KK; MacLeod JK; Williams JF
    Eur J Biochem; 1993 Apr; 213(1):477-85. PubMed ID: 8477719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The metabolic production of oxalate from xylitol: activities of transketolase, transaldolase, fructokinase and aldolase in liver, kidney, brain, heart and muscle in the rat, mouse, guinea pig, rabbit and human.
    James HM; Williams SG; Bais R; Rofe AM; Edwards JB; Conyers RA
    Int J Vitam Nutr Res Suppl; 1985; 28():29-46. PubMed ID: 3009653
    [No Abstract]   [Full Text] [Related]  

  • 19. Converting Transaldolase into Aldolase through Swapping of the Multifunctional Acid-Base Catalyst: Common and Divergent Catalytic Principles in F6P Aldolase and Transaldolase.
    Sautner V; Friedrich MM; Lehwess-Litzmann A; Tittmann K
    Biochemistry; 2015 Jul; 54(29):4475-86. PubMed ID: 26131847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutathione disulfide inactivates, destabilizes, and enhances proteolytic susceptibility of fructose-1,6-bisphosphate aldolase.
    Offermann MK; McKay MJ; Marsh MW; Bond JS
    J Biol Chem; 1984 Jul; 259(14):8886-91. PubMed ID: 6746628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.