These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 7702618)
1. D175 discriminates between NADH and NADPH in the coenzyme binding site of Lactobacillus delbrueckii subsp. bulgaricus D-lactate dehydrogenase. Bernard N; Johnsen K; Holbrook JJ; Delcour J Biochem Biophys Res Commun; 1995 Mar; 208(3):895-900. PubMed ID: 7702618 [TBL] [Abstract][Full Text] [Related]
2. Domain closure, substrate specificity and catalysis of D-lactate dehydrogenase from Lactobacillus bulgaricus. Razeto A; Kochhar S; Hottinger H; Dauter M; Wilson KS; Lamzin VS J Mol Biol; 2002 Apr; 318(1):109-19. PubMed ID: 12054772 [TBL] [Abstract][Full Text] [Related]
3. Knowledge-based modeling of the D-lactate dehydrogenase three-dimensional structure. Vinals C; De Bolle X; Depiereux E; Feytmans E Proteins; 1995 Apr; 21(4):307-18. PubMed ID: 7567953 [TBL] [Abstract][Full Text] [Related]
4. Structural determinants of nucleotide coenzyme specificity in the distinctive dinucleotide binding fold of HMG-CoA reductase from Pseudomonas mevalonii. Friesen JA; Lawrence CM; Stauffacher CV; Rodwell VW Biochemistry; 1996 Sep; 35(37):11945-50. PubMed ID: 8810898 [TBL] [Abstract][Full Text] [Related]
5. His273 of 3-isopropylmalate dehydrogenase from Thermus thermophilus HB8 is involved in the coenzyme binding. Yaoi T; Miyazaki K; Oshima T Biochem Biophys Res Commun; 1995 May; 210(3):733-7. PubMed ID: 7763246 [TBL] [Abstract][Full Text] [Related]
6. Evolution of lactate dehydrogenase-A homologs of barracuda fishes (genus Sphyraena) from different thermal environments: differences in kinetic properties and thermal stability are due to amino acid substitutions outside the active site. Holland LZ; McFall-Ngai M; Somero GN Biochemistry; 1997 Mar; 36(11):3207-15. PubMed ID: 9115998 [TBL] [Abstract][Full Text] [Related]
7. Roles of histidine-194, aspartate-163, and a glycine-rich sequence of NAD(P)H:quinone oxidoreductase in the interaction with nicotinamide coenzymes. Cui K; Ma Q; Lu AY; Yang CS Arch Biochem Biophys; 1995 Nov; 323(2):265-73. PubMed ID: 7487087 [TBL] [Abstract][Full Text] [Related]
8. Probing the determinants of coenzyme specificity in Peptostreptococcus asaccharolyticus glutamate dehydrogenase by site-directed mutagenesis. Carrigan JB; Engel PC FEBS J; 2007 Oct; 274(19):5167-74. PubMed ID: 17850332 [TBL] [Abstract][Full Text] [Related]
9. Crystal structure of the MJ0490 gene product of the hyperthermophilic archaebacterium Methanococcus jannaschii, a novel member of the lactate/malate family of dehydrogenases. Lee BI; Chang C; Cho SJ; Eom SH; Kim KK; Yu YG; Suh SW J Mol Biol; 2001 Apr; 307(5):1351-62. PubMed ID: 11292347 [TBL] [Abstract][Full Text] [Related]
10. Implication by site-directed mutagenesis of Arg314 and Tyr316 in the coenzyme site of pig mitochondrial NADP-dependent isocitrate dehydrogenase. Lee P; Colman RF Arch Biochem Biophys; 2002 May; 401(1):81-90. PubMed ID: 12054490 [TBL] [Abstract][Full Text] [Related]
11. Identification of an arginine residue in the dual coenzyme-specific glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides that plays a key role in binding NADP+ but not NAD+. Levy HR; Vought VE; Yin X; Adams MJ Arch Biochem Biophys; 1996 Feb; 326(1):145-51. PubMed ID: 8579362 [TBL] [Abstract][Full Text] [Related]
12. Properties of D-lactate dehydrogenase from Lactobacillus bulgaricus: a possible different evolutionary origin for the D- and L-lactate dehydrogenases. Le Bras G; Garel JR FEMS Microbiol Lett; 1991 Mar; 63(1):89-93. PubMed ID: 2044942 [TBL] [Abstract][Full Text] [Related]
14. A modified consensus approach to mutagenesis inverts the cofactor specificity of Bacillus stearothermophilus lactate dehydrogenase. Flores H; Ellington AD Protein Eng Des Sel; 2005 Aug; 18(8):369-77. PubMed ID: 16012175 [TBL] [Abstract][Full Text] [Related]
15. Alteration of coenzyme specificity of lactate dehydrogenase from Thermus thermophilus by introducing the loop region of NADP(H)-dependent malate dehydrogenase. Tomita T; Kuzuyama T; Nishiyama M Biosci Biotechnol Biochem; 2006 Sep; 70(9):2230-5. PubMed ID: 16960374 [TBL] [Abstract][Full Text] [Related]
16. D-2-hydroxy-4-methylvalerate dehydrogenase from Lactobacillus delbrueckii subsp. bulgaricus. II. Mutagenic analysis of catalytically important residues. Bernard N; Johnsen K; Gelpi JL; Alvarez JA; Ferain T; Garmyn D; Hols P; Cortes A; Clarke AR; Holbrook JJ; Delcour J Eur J Biochem; 1997 Feb; 244(1):213-9. PubMed ID: 9063466 [TBL] [Abstract][Full Text] [Related]
17. Redesign of the coenzyme specificity in L-lactate dehydrogenase from bacillus stearothermophilus using site-directed mutagenesis and media engineering. Holmberg N; Ryde U; Bülow L Protein Eng; 1999 Oct; 12(10):851-6. PubMed ID: 10556245 [TBL] [Abstract][Full Text] [Related]
18. Charge balance in the alpha-hydroxyacid dehydrogenase vacuole: an acid test. Cortes A; Emery DC; Halsall DJ; Jackson RM; Clarke AR; Holbrook JJ Protein Sci; 1992 Jul; 1(7):892-901. PubMed ID: 1304374 [TBL] [Abstract][Full Text] [Related]
19. Recognition site for the side chain of 2-ketoacid substrate in d-lactate dehydrogenase. Ishikura Y; Tsuzuki S; Takahashi O; Tokuda C; Nakanishi R; Shinoda T; Taguchi H J Biochem; 2005 Dec; 138(6):741-9. PubMed ID: 16428303 [TBL] [Abstract][Full Text] [Related]
20. Lysine 219 participates in NADPH specificity in a flavin-containing monooxygenase from Saccharomyces cerevisiae. Suh JK; Poulsen LL; Ziegler DM; Robertus JD Arch Biochem Biophys; 1999 Dec; 372(2):360-6. PubMed ID: 10600176 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]