BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 7702740)

  • 1. Fluorescence studies of normal and sickle beta apohemoglobin self-association.
    O'Malley SM; McDonald MJ
    J Protein Chem; 1994 Oct; 13(7):585-90. PubMed ID: 7702740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence studies of human semi-beta-hemoglobin assembly.
    Chiu F; Vasudevan G; Morris A; McDonald MJ
    Biochem Biophys Res Commun; 1998 Jan; 242(2):365-8. PubMed ID: 9446800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring the effect of subunit assembly on the structural flexibility of human alpha apohemoglobin by steady-state fluorescence.
    O'Malley SM; McDonald MJ
    J Protein Chem; 1994 Aug; 13(6):561-7. PubMed ID: 7832985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of human apohemoglobin dimer dissociation.
    Moulton DP; McDonald MJ
    Biochem Biophys Res Commun; 1994 Mar; 199(3):1278-83. PubMed ID: 8147871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral demonstration of semihemoglobin formation during CN-hemin incorporation into human apohemoglobins.
    Vasudevan G; McDonald MJ
    J Biol Chem; 1997 Jan; 272(1):517-24. PubMed ID: 8995292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gelling properties of apohemoglobin S alone and in mixtures with hemoglobin S.
    Campbell B; Fronticelli C; Zachary A; Bucci E
    J Biol Chem; 1986 Mar; 261(9):3931-3. PubMed ID: 3949796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on hemoglobin tryptophanyl contact residues in the haptoglobin-hemoglobin complex.
    Rogard M; Waks M
    Eur J Biochem; 1977 Jul; 77(2):367-73. PubMed ID: 891540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous motions within human apohemoglobin.
    Haouz A; El Mohsni S; Zentz C; Merola F; Alpert B
    Eur J Biochem; 1999 Aug; 264(1):250-7. PubMed ID: 10447695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carboxyl-terminal modification influences subunit assembly of sickle hemoglobin beta chains.
    Moulton DP; Morris A; Vasudevan G; Chiu F; McDonald MJ
    Biochem Biophys Res Commun; 1996 Sep; 226(2):309-13. PubMed ID: 8806631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of glucose and magnesium ion on the quenching of yeast hexokinase fluorescence by acrylamide.
    Feldman I; Norton GE
    Biochim Biophys Acta; 1980 Sep; 615(1):132-42. PubMed ID: 7000190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acrylamide quenching of apo- and holo-alpha-lactalbumin in guanidine hydrochloride.
    France RM; Grossman SH
    Biochem Biophys Res Commun; 2000 Mar; 269(3):709-12. PubMed ID: 10720481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monomer diffusion into polymer domains in sickle hemoglobin.
    Cho MR; Ferrone FA
    Biophys J; 1990 Oct; 58(4):1067-73. PubMed ID: 2248990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acrylamide and oxygen fluorescence quenching studies with liver alcohol dehydrogenase using steady-state and phase fluorometry.
    Eftink MR; Jameson DM
    Biochemistry; 1982 Aug; 21(18):4443-9. PubMed ID: 6751389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical modulation of sickle cell haemoglobin polymerisation.
    Iqbal Z; McKendry R; Horton M; Caruana DJ
    Analyst; 2007 Jan; 132(1):27-33. PubMed ID: 17180176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of alpha 114 and beta 87 amino acid residues in the polymerization of hemoglobin S: implications for gene therapy.
    Ho C; Willis BF; Shen TJ; Dazhen NT; Sun DP; Tam MF; Suzuka SM; Fabry ME; Nagel RL
    J Mol Biol; 1996 Nov; 263(3):475-85. PubMed ID: 8918602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aggregation of normal and sickle hemoglobin in high concentration phosphate buffer.
    Chen K; Ballas SK; Hantgan RR; Kim-Shapiro DB
    Biophys J; 2004 Dec; 87(6):4113-21. PubMed ID: 15465861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of tryptophan residues of cytochrome P450scc with a highly specific fluorescence quencher, a substrate analogue, compared to acrylamide and iodide.
    Lange R; Anzenbacher P; Müller S; Maurin L; Balny C
    Eur J Biochem; 1994 Dec; 226(3):963-70. PubMed ID: 7813487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alteration of tryptophan fluorescence properties upon dissociation of Lumbricus terrestris hemoglobin.
    Hirsch RE; Vidugiris GJ; Friedman JM; Harrington JP
    Biochim Biophys Acta; 1994 Apr; 1205(2):248-51. PubMed ID: 8155704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carboxyl-terminal modification alters the subunit interactions and assembly pathways of normal and sickle hemoglobins.
    Morris A; McDonald MJ
    J Protein Chem; 2001 Nov; 20(8):611-7. PubMed ID: 11890201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of heme binding to semi-alpha-hemoglobin.
    Park RY; McDonald MJ
    Biochem Biophys Res Commun; 1989 Jul; 162(1):522-7. PubMed ID: 2751669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.