These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 7702780)

  • 1. Investigation of domain motions in bacteriophage T4 lysozyme.
    Arnold GE; Manchester JI; Townsend BD; Ornstein RL
    J Biomol Struct Dyn; 1994 Oct; 12(2):457-74. PubMed ID: 7702780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein flexibility and adaptability seen in 25 crystal forms of T4 lysozyme.
    Zhang XJ; Wozniak JA; Matthews BW
    J Mol Biol; 1995 Jul; 250(4):527-52. PubMed ID: 7616572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient characterization of collective motions and interresidue correlations in proteins by low-resolution simulations.
    Bahar I; Erman B; Haliloglu T; Jernigan RL
    Biochemistry; 1997 Nov; 36(44):13512-23. PubMed ID: 9354619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformation of T4 lysozyme in solution. Hinge-bending motion and the substrate-induced conformational transition studied by site-directed spin labeling.
    Mchaourab HS; Oh KJ; Fang CJ; Hubbell WL
    Biochemistry; 1997 Jan; 36(2):307-16. PubMed ID: 9003182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein hinge bending as seen in molecular dynamics simulations of native and M61 mutant T4 lysozymes.
    Arnold GE; Ornstein RL
    Biopolymers; 1997 Apr; 41(5):533-44. PubMed ID: 9095676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A molecular dynamics simulation of bacteriophage T4 lysozyme.
    Arnold GE; Ornstein RL
    Protein Eng; 1992 Oct; 5(7):703-14. PubMed ID: 1480623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What is the average conformation of bacteriophage T4 lysozyme in solution? A domain orientation study using dipolar couplings measured by solution NMR.
    Goto NK; Skrynnikov NR; Dahlquist FW; Kay LE
    J Mol Biol; 2001 May; 308(4):745-64. PubMed ID: 11350172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of a stabilizing disulfide bridge mutant that closes the active-site cleft of T4 lysozyme.
    Jacobson RH; Matsumura M; Faber HR; Matthews BW
    Protein Sci; 1992 Jan; 1(1):46-57. PubMed ID: 1304882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics.
    Mchaourab HS; Lietzow MA; Hideg K; Hubbell WL
    Biochemistry; 1996 Jun; 35(24):7692-704. PubMed ID: 8672470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Domain motions in bacteriophage T4 lysozyme: a comparison between molecular dynamics and crystallographic data.
    de Groot BL; Hayward S; van Aalten DM; Amadei A; Berendsen HJ
    Proteins; 1998 May; 31(2):116-27. PubMed ID: 9593186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of alpha-helix propensity within the context of a folded protein. Sites 44 and 131 in bacteriophage T4 lysozyme.
    Blaber M; Zhang XJ; Lindstrom JD; Pepiot SD; Baase WA; Matthews BW
    J Mol Biol; 1994 Jan; 235(2):600-24. PubMed ID: 8289284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alanine scanning mutagenesis of the alpha-helix 115-123 of phage T4 lysozyme: effects on structure, stability and the binding of solvent.
    Blaber M; Baase WA; Gassner N; Matthews BW
    J Mol Biol; 1995 Feb; 246(2):317-30. PubMed ID: 7869383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of a pyrimidine dimer-specific excision repair enzyme from bacteriophage T4: refinement at 1.45 A and X-ray analysis of the three active site mutants.
    Morikawa K; Ariyoshi M; Vassylyev DG; Matsumoto O; Katayanagi K; Ohtsuka E
    J Mol Biol; 1995 Jun; 249(2):360-75. PubMed ID: 7783199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent interactions and protein dynamics in spin-labeled T4 lysozyme.
    Stoica I
    J Biomol Struct Dyn; 2004 Jun; 21(6):745-60. PubMed ID: 15106997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple alanine replacements within alpha-helix 126-134 of T4 lysozyme have independent, additive effects on both structure and stability.
    Zhang XJ; Baase WA; Matthews BW
    Protein Sci; 1992 Jun; 1(6):761-76. PubMed ID: 1304917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accommodation of amino acid insertions in an alpha-helix of T4 lysozyme. Structural and thermodynamic analysis.
    Heinz DW; Baase WA; Zhang XJ; Blaber M; Dahlquist FW; Matthews BW
    J Mol Biol; 1994 Feb; 236(3):869-86. PubMed ID: 8114100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic analysis of domain motions in proteins from conformational change: new results on citrate synthase and T4 lysozyme.
    Hayward S; Berendsen HJ
    Proteins; 1998 Feb; 30(2):144-54. PubMed ID: 9489922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling protein-small molecule interactions: structure and thermodynamics of noble gases binding in a cavity in mutant phage T4 lysozyme L99A.
    Mann G; Hermans J
    J Mol Biol; 2000 Sep; 302(4):979-89. PubMed ID: 10993736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evaluation of implicit and explicit solvent model systems for the molecular dynamics simulation of bacteriophage T4 lysozyme.
    Arnold GE; Ornstein RL
    Proteins; 1994 Jan; 18(1):19-33. PubMed ID: 8146120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bunching effect in single-molecule T4 lysozyme nonequilibrium conformational dynamics under enzymatic reactions.
    Wang Y; Lu HP
    J Phys Chem B; 2010 May; 114(19):6669-74. PubMed ID: 20369804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.