These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 7703246)
1. Octahedral coordination at the high-affinity metal site in enolase: crystallographic analysis of the MgII--enzyme complex from yeast at 1.9 A resolution. Wedekind JE; Reed GH; Rayment I Biochemistry; 1995 Apr; 34(13):4325-30. PubMed ID: 7703246 [TBL] [Abstract][Full Text] [Related]
2. Chelation of serine 39 to Mg2+ latches a gate at the active site of enolase: structure of the bis(Mg2+) complex of yeast enolase and the intermediate analog phosphonoacetohydroxamate at 2.1-A resolution. Wedekind JE; Poyner RR; Reed GH; Rayment I Biochemistry; 1994 Aug; 33(31):9333-42. PubMed ID: 8049235 [TBL] [Abstract][Full Text] [Related]
3. A carboxylate oxygen of the substrate bridges the magnesium ions at the active site of enolase: structure of the yeast enzyme complexed with the equilibrium mixture of 2-phosphoglycerate and phosphoenolpyruvate at 1.8 A resolution. Larsen TM; Wedekind JE; Rayment I; Reed GH Biochemistry; 1996 Apr; 35(14):4349-58. PubMed ID: 8605183 [TBL] [Abstract][Full Text] [Related]
4. Catalytic metal ion binding in enolase: the crystal structure of an enolase-Mn2+-phosphonoacetohydroxamate complex at 2.4-A resolution. Zhang E; Hatada M; Brewer JM; Lebioda L Biochemistry; 1994 May; 33(20):6295-300. PubMed ID: 8193144 [TBL] [Abstract][Full Text] [Related]
5. Engineering the enolase magnesium II binding site: implications for its evolution. Schreier B; Höcker B Biochemistry; 2010 Sep; 49(35):7582-9. PubMed ID: 20690637 [TBL] [Abstract][Full Text] [Related]
6. Functional and structural changes due to a serine to alanine mutation in the active-site flap of enolase. Poyner RR; Larsen TM; Wong SW; Reed GH Arch Biochem Biophys; 2002 May; 401(2):155-63. PubMed ID: 12054465 [TBL] [Abstract][Full Text] [Related]
7. Structure of the bis divalent cation complex with phosphonoacetohydroxamate at the active site of enolase. Poyner RR; Reed GH Biochemistry; 1992 Aug; 31(31):7166-73. PubMed ID: 1322695 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of enolase: the crystal structures of enolase-Ca2(+)- 2-phosphoglycerate and enolase-Zn2(+)-phosphoglycolate complexes at 2.2-A resolution. Lebioda L; Stec B; Brewer JM; Tykarska E Biochemistry; 1991 Mar; 30(11):2823-7. PubMed ID: 2007121 [TBL] [Abstract][Full Text] [Related]
10. Evolution of an enzyme active site: the structure of a new crystal form of muconate lactonizing enzyme compared with mandelate racemase and enolase. Hasson MS; Schlichting I; Moulai J; Taylor K; Barrett W; Kenyon GL; Babbitt PC; Gerlt JA; Petsko GA; Ringe D Proc Natl Acad Sci U S A; 1998 Sep; 95(18):10396-401. PubMed ID: 9724714 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of enolase: the crystal structure of enolase-Mg2(+)-2-phosphoglycerate/phosphoenolpyruvate complex at 2.2-A resolution. Lebioda L; Stec B Biochemistry; 1991 Mar; 30(11):2817-22. PubMed ID: 2007120 [TBL] [Abstract][Full Text] [Related]
12. An X-ray absorption spectroscopy study of the interactions of Ni2+ with yeast enolase. Wang S; Scott RA; Lebioda L; Zhou ZH; Brewer JM J Inorg Biochem; 1995 May; 58(3):209-21. PubMed ID: 7782789 [TBL] [Abstract][Full Text] [Related]
13. 25Mg NMR studies of yeast enolase and rabbit muscle pyruvate kinase. Lee ME; Nowak T Arch Biochem Biophys; 1992 Mar; 293(2):264-73. PubMed ID: 1311162 [TBL] [Abstract][Full Text] [Related]
14. Evolution of enzymatic activity in the enolase superfamily: structure of o-succinylbenzoate synthase from Escherichia coli in complex with Mg2+ and o-succinylbenzoate. Thompson TB; Garrett JB; Taylor EA; Meganathan R; Gerlt JA; Rayment I Biochemistry; 2000 Sep; 39(35):10662-76. PubMed ID: 10978150 [TBL] [Abstract][Full Text] [Related]
15. Metal-nucleotide interactions: crystal structures of alkali (Li+, Na+, K+) and alkaline earth (Ca2+, Mg2+) metal complexes of adenosine 2'-monophosphate. Padiyar GS; Seshadri TP J Biomol Struct Dyn; 1998 Feb; 15(4):803-21. PubMed ID: 9514255 [TBL] [Abstract][Full Text] [Related]
16. Role of His159 in yeast enolase catalysis. Vinarov DA; Nowak T Biochemistry; 1999 Sep; 38(37):12138-49. PubMed ID: 10508418 [TBL] [Abstract][Full Text] [Related]
17. Role of metal ions in catalysis by enolase: an ordered kinetic mechanism for a single substrate enzyme. Poyner RR; Cleland WW; Reed GH Biochemistry; 2001 Jul; 40(27):8009-17. PubMed ID: 11434770 [TBL] [Abstract][Full Text] [Related]
18. Evolution of enzymatic activities in the enolase superfamily: crystallographic and mutagenesis studies of the reaction catalyzed by D-glucarate dehydratase from Escherichia coli. Gulick AM; Hubbard BK; Gerlt JA; Rayment I Biochemistry; 2000 Apr; 39(16):4590-602. PubMed ID: 10769114 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of enolase: the crystal structure of asymmetric dimer enolase-2-phospho-D-glycerate/enolase-phosphoenolpyruvate at 2.0 A resolution. Zhang E; Brewer JM; Minor W; Carreira LA; Lebioda L Biochemistry; 1997 Oct; 36(41):12526-34. PubMed ID: 9376357 [TBL] [Abstract][Full Text] [Related]
20. Evolution of enzymatic activities in the enolase superfamily: crystal structure of (D)-glucarate dehydratase from Pseudomonas putida. Gulick AM; Palmer DR; Babbitt PC; Gerlt JA; Rayment I Biochemistry; 1998 Oct; 37(41):14358-68. PubMed ID: 9772161 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]