BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 7703316)

  • 1. Biodegradation of PLA/GA polymers: increasing complexity.
    Vert M; Mauduit J; Li S
    Biomaterials; 1994 Dec; 15(15):1209-13. PubMed ID: 7703316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence.
    Grizzi I; Garreau H; Li S; Vert M
    Biomaterials; 1995 Mar; 16(4):305-11. PubMed ID: 7772670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition.
    Park TG
    Biomaterials; 1995 Oct; 16(15):1123-30. PubMed ID: 8562787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable microspheres as controlled-release tetanus toxoid delivery systems.
    Alonso MJ; Gupta RK; Min C; Siber GR; Langer R
    Vaccine; 1994 Mar; 12(4):299-306. PubMed ID: 8178550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential degradation rates in vivo and in vitro of biocompatible poly(lactic acid) and poly(glycolic acid) homo- and co-polymers for a polymeric drug-delivery microchip.
    Grayson AC; Voskerician G; Lynn A; Anderson JM; Cima MJ; Langer R
    J Biomater Sci Polym Ed; 2004; 15(10):1281-304. PubMed ID: 15559850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein instability in poly(lactic-co-glycolic acid) microparticles.
    van de Weert M; Hennink WE; Jiskoot W
    Pharm Res; 2000 Oct; 17(10):1159-67. PubMed ID: 11145219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural properties of biodegradable polyesters and rheological behaviour of their dispersions and films.
    Santoveña A; Alvarez-Lorenzo C; Concheiro A; Llabrés M; Fariña JB
    J Biomater Sci Polym Ed; 2005; 16(5):629-41. PubMed ID: 16001721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological changes in degrading PLGA and P(DL)LA microspheres: implications for the design of controlled release systems.
    Viswanathan NB; Patil SS; Pandit JK; Lele AK; Kulkarni MG; Mashelkar RA
    J Microencapsul; 2001; 18(6):783-800. PubMed ID: 11695641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: biodegradation.
    Wu XS; Wang N
    J Biomater Sci Polym Ed; 2001; 12(1):21-34. PubMed ID: 11334187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Something new in the field of PLA/GA bioresorbable polymers?
    Vert M; Schwach G; Engel R; Coudane J
    J Control Release; 1998 Apr; 53(1-3):85-92. PubMed ID: 9741916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stabilized polyglycolic acid fibre-based tubes for tissue engineering.
    Mooney DJ; Mazzoni CL; Breuer C; McNamara K; Hern D; Vacanti JP; Langer R
    Biomaterials; 1996 Jan; 17(2):115-24. PubMed ID: 8624388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Research progresses on degradation mechanism in vivo and medical applications of polylactic acid].
    Liu JW; Zhao Q; Wan CX
    Space Med Med Eng (Beijing); 2001 Aug; 14(4):308-12. PubMed ID: 11681349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erosion of biodegradable block copolymers made of poly(D,L-lactic acid) and poly(ethylene glycol).
    von Burkersroda F; Gref R; Göpferich A
    Biomaterials; 1997 Dec; 18(24):1599-607. PubMed ID: 9613807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of bioerodible polymeric microspheres and microparticles by rapid expansion of supercritical solutions.
    Tom JW; Debenedetti PG
    Biotechnol Prog; 1991; 7(5):403-11. PubMed ID: 1369363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physicomechanical properties of biodegradable poly(D,L-lactide) and poly(D,L-lactide-co-glycolide) films in the dry and wet states.
    Kranz H; Ubrich N; Maincent P; Bodmeier R
    J Pharm Sci; 2000 Dec; 89(12):1558-66. PubMed ID: 11042603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams.
    Lu L; Peter SJ; Lyman MD; Lai HL; Leite SM; Tamada JA; Uyama S; Vacanti JP; Langer R; Mikos AG
    Biomaterials; 2000 Sep; 21(18):1837-45. PubMed ID: 10919687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method.
    Nam YS; Park TG
    Biomaterials; 1999 Oct; 20(19):1783-90. PubMed ID: 10509188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers: I. Synthesis and characterization.
    Wang N; Wu XS; Li C; Feng MF
    J Biomater Sci Polym Ed; 2000; 11(3):301-18. PubMed ID: 10841281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attempts to map the structure and degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids.
    Vert M; Li SM; Garreau H
    J Biomater Sci Polym Ed; 1994; 6(7):639-49. PubMed ID: 7873515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer chain scission, oligomer production and diffusion: a two-scale model for degradation of bioresorbable polyesters.
    Han X; Pan J
    Acta Biomater; 2011 Feb; 7(2):538-47. PubMed ID: 20832507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.