These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 7703316)

  • 21. Physico-mechanical properties of degradable polymers used in medical applications: a comparative study.
    Engelberg I; Kohn J
    Biomaterials; 1991 Apr; 12(3):292-304. PubMed ID: 1649646
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications.
    Hutmacher D; Hürzeler MB; Schliephake H
    Int J Oral Maxillofac Implants; 1996; 11(5):667-78. PubMed ID: 8908867
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biodegradable fracture-fixation devices in maxillofacial surgery.
    Suuronen R
    Int J Oral Maxillofac Surg; 1993 Feb; 22(1):50-7. PubMed ID: 8384646
    [No Abstract]   [Full Text] [Related]  

  • 24. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices.
    Jain RA
    Biomaterials; 2000 Dec; 21(23):2475-90. PubMed ID: 11055295
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The production of uniformly sized polymer microspheres.
    Amsden B
    Pharm Res; 1999 Jul; 16(7):1140-3. PubMed ID: 10450945
    [No Abstract]   [Full Text] [Related]  

  • 26. In vitro degradation of thin poly(DL-lactic-co-glycolic acid) films.
    Lu L; Garcia CA; Mikos AG
    J Biomed Mater Res; 1999 Aug; 46(2):236-44. PubMed ID: 10380002
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of formulation variables on the morphology of biodegradable microparticles prepared by spray drying.
    Clarke N; O'Connor K; Ramtoola Z
    Drug Dev Ind Pharm; 1998 Feb; 24(2):169-74. PubMed ID: 15605447
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Decreased fibroblast cell density on chemically degraded poly-lactic-co-glycolic acid, polyurethane, and polycaprolactone.
    Vance RJ; Miller DC; Thapa A; Haberstroh KM; Webster TJ
    Biomaterials; 2004 May; 25(11):2095-103. PubMed ID: 14741624
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation of three-month depot injectable microspheres of leuprorelin acetate using biodegradable polymers.
    Okada H; Doken Y; Ogawa Y; Toguchi H
    Pharm Res; 1994 Aug; 11(8):1143-7. PubMed ID: 7971715
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cellular compatibility of a gamma-irradiated modified siloxane-poly(lactic acid)-calcium carbonate hybrid membrane for guided bone regeneration.
    Takeuchi N; Machigashira M; Yamashita D; Shirakata Y; Kasuga T; Noguchi K; Ban S
    Dent Mater J; 2011; 30(5):730-8. PubMed ID: 21946495
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Applications of biodegradable lactides and glycolides in podiatry.
    Athanasiou KA; Niederauer GG; Agrawal CM; Landsman AS
    Clin Podiatr Med Surg; 1995 Jul; 12(3):475-95. PubMed ID: 7553536
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A study on the in vitro degradation of poly(lactic acid).
    Migliaresi C; Fambri L; Cohn D
    J Biomater Sci Polym Ed; 1994; 5(6):591-606. PubMed ID: 8086385
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of blending calcium compounds on hydrolytic degradation of poly(DL-lactic acid-co-glycolic acid).
    Ara M; Watanabe M; Imai Y
    Biomaterials; 2002 Jun; 23(12):2479-83. PubMed ID: 12033595
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Poly-DL-lactic acid: polyethylene glycol block copolymers. The influence of polyethylene glycol on the degradation of poly-DL-lactic acid.
    Shah SS; Zhu KJ; Pitt CG
    J Biomater Sci Polym Ed; 1994; 5(5):421-31. PubMed ID: 8038137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Growth of various cell types in the presence of lactic and glycolic acids: the adverse effect of glycolic acid released from PLAGA copolymer on keratinocyte proliferation.
    Garric X; Molès JP; Garreau H; Braud C; Guilhou JJ; Vert M
    J Biomater Sci Polym Ed; 2002; 13(11):1189-201. PubMed ID: 12518799
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo degradation of massive poly(alpha-hydroxy acids): validation of in vitro findings.
    Therin M; Christel P; Li S; Garreau H; Vert M
    Biomaterials; 1992; 13(9):594-600. PubMed ID: 1391406
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis and properties of novel block copolymers containing poly(lactic-glycolic acid) and poly(ethyleneglycol) segments.
    Ferruti P; Penco M; D'Addato P; Ranucci E; Deghenghi R
    Biomaterials; 1995 Dec; 16(18):1423-8. PubMed ID: 8590770
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration.
    Widmer MS; Gupta PK; Lu L; Meszlenyi RK; Evans GR; Brandt K; Savel T; Gurlek A; Patrick CW; Mikos AG
    Biomaterials; 1998 Nov; 19(21):1945-55. PubMed ID: 9863528
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physicochemical characterization of photopolymerizable PLGA blends.
    Baroli B
    Adv Exp Med Biol; 2006; 585():183-96. PubMed ID: 17120785
    [No Abstract]   [Full Text] [Related]  

  • 40. Preparation of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams by use of ice microparticulates.
    Chen G; Ushida T; Tateishi T
    Biomaterials; 2001 Sep; 22(18):2563-7. PubMed ID: 11516089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.