These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 7703367)
1. Quinone methide formation from para isomers of methylphenol (cresol), ethylphenol, and isopropylphenol: relationship to toxicity. Thompson DC; Perera K; London R Chem Res Toxicol; 1995; 8(1):55-60. PubMed ID: 7703367 [TBL] [Abstract][Full Text] [Related]
2. Spontaneous hydrolysis of 4-trifluoromethylphenol to a quinone methide and subsequent protein alkylation. Thompson DC; Perera K; London R Chem Biol Interact; 2000 Apr; 126(1):1-14. PubMed ID: 10826650 [TBL] [Abstract][Full Text] [Related]
3. Cresol isomers: comparison of toxic potency in rat liver slices. Thompson DC; Perera K; Fisher R; Brendel K Toxicol Appl Pharmacol; 1994 Mar; 125(1):51-8. PubMed ID: 8128495 [TBL] [Abstract][Full Text] [Related]
4. Studies on the mechanism of hepatotoxicity of 4-methylphenol (p-cresol): effects of deuterium labeling and ring substitution. Thompson DC; Perera K; London R Chem Biol Interact; 1996 Jun; 101(1):1-11. PubMed ID: 8665615 [TBL] [Abstract][Full Text] [Related]
5. Formation of DNA adducts by microsomal and peroxidase activation of p-cresol: role of quinone methide in DNA adduct formation. Gaikwad NW; Bodell WJ Chem Biol Interact; 2001 Dec; 138(3):217-29. PubMed ID: 11714480 [TBL] [Abstract][Full Text] [Related]
6. 4-Hydroxylated metabolites of the antiestrogens tamoxifen and toremifene are metabolized to unusually stable quinone methides. Fan PW; Zhang F; Bolton JL Chem Res Toxicol; 2000 Jan; 13(1):45-52. PubMed ID: 10649966 [TBL] [Abstract][Full Text] [Related]
7. The influence of 4-alkyl substituents on the formation and reactivity of 2-methoxy-quinone methides: evidence that extended pi-conjugation dramatically stabilizes the quinone methide formed from eugenol. Bolton JL; Comeau E; Vukomanovic V Chem Biol Interact; 1995 Apr; 95(3):279-90. PubMed ID: 7728898 [TBL] [Abstract][Full Text] [Related]
8. Bioactivation of estrone and its catechol metabolites to quinoid-glutathione conjugates in rat liver microsomes. Iverson SL; Shen L; Anlar N; Bolton JL Chem Res Toxicol; 1996 Mar; 9(2):492-9. PubMed ID: 8839054 [TBL] [Abstract][Full Text] [Related]
9. The enzymatic formation and chemical reactivity of quinone methides correlate with alkylphenol-induced toxicity in rat hepatocytes. Bolton JL; Valerio LG; Thompson JA Chem Res Toxicol; 1992; 5(6):816-22. PubMed ID: 1489934 [TBL] [Abstract][Full Text] [Related]
10. Bioactivation of phencyclidine in rat and human liver microsomes and recombinant P450 2B enzymes: evidence for the formation of a novel quinone methide intermediate. Driscoll JP; Kornecki K; Wolkowski JP; Chupak L; Kalgutkar AS; O'Donnell JP Chem Res Toxicol; 2007 Oct; 20(10):1488-97. PubMed ID: 17892269 [TBL] [Abstract][Full Text] [Related]
11. Comparative metabolism, covalent binding and toxicity of BHT congeners in rat liver slices. Reed M; Fujiwara H; Thompson DC Chem Biol Interact; 2001 Nov; 138(2):155-70. PubMed ID: 11672698 [TBL] [Abstract][Full Text] [Related]
12. Bioactivation of 4-methylphenol (p-cresol) via cytochrome P450-mediated aromatic oxidation in human liver microsomes. Yan Z; Zhong HM; Maher N; Torres R; Leo GC; Caldwell GW; Huebert N Drug Metab Dispos; 2005 Dec; 33(12):1867-76. PubMed ID: 16174805 [TBL] [Abstract][Full Text] [Related]
13. o-Methoxy-4-alkylphenols that form quinone methides of intermediate reactivity are the most toxic in rat liver slices. Thompson DC; Perera K; Krol ES; Bolton JL Chem Res Toxicol; 1995; 8(3):323-7. PubMed ID: 7578916 [TBL] [Abstract][Full Text] [Related]
14. The influence of the p-alkyl substituent on the isomerization of o-quinones to p-quinone methides: potential bioactivation mechanism for catechols. Iverson SL; Hu LQ; Vukomanovic V; Bolton JL Chem Res Toxicol; 1995 Jun; 8(4):537-44. PubMed ID: 7548733 [TBL] [Abstract][Full Text] [Related]
15. Electronic and structural requirements for metabolic activation of butylated hydroxytoluene analogs to their quinone methides, intermediates responsible for lung toxicity in mice. Yamamoto K; Kato S; Tajima K; Mizutani T Biol Pharm Bull; 1997 May; 20(5):571-3. PubMed ID: 9178942 [TBL] [Abstract][Full Text] [Related]
16. Oxidation of butylated hydroxytoluene to toxic metabolites. Factors influencing hydroxylation and quinone methide formation by hepatic and pulmonary microsomes. Bolton JL; Thompson JA Drug Metab Dispos; 1991; 19(2):467-72. PubMed ID: 1676656 [TBL] [Abstract][Full Text] [Related]
17. Studies using structural analogs and inbred strain differences to support a role for quinone methide metabolites of butylated hydroxytoluene (BHT) in mouse lung tumor promotion. Thompson JA; Carlson TJ; Sun Y; Dwyer-Nield LD; Malkinson AM Toxicology; 2001 Mar; 160(1-3):197-205. PubMed ID: 11246140 [TBL] [Abstract][Full Text] [Related]
18. Metabolism and toxicity of 4-hydroxyphenylacetone in rat liver slices: comparison with acetaminophen. Thompson DC; Perera K; London R Drug Metab Dispos; 1996 Aug; 24(8):866-71. PubMed ID: 8869821 [TBL] [Abstract][Full Text] [Related]
19. Evidence for the bioactivation of 4-nonylphenol to quinone methide and ortho-benzoquinone metabolites in human liver microsomes. Deng P; Zhong D; Nan F; Liu S; Li D; Yuan T; Chen X; Zheng J Chem Res Toxicol; 2010 Oct; 23(10):1617-28. PubMed ID: 20843008 [TBL] [Abstract][Full Text] [Related]
20. Bioactivation of tamoxifen to metabolite E quinone methide: reaction with glutathione and DNA. Fan PW; Bolton JL Drug Metab Dispos; 2001 Jun; 29(6):891-6. PubMed ID: 11353759 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]