BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 7703367)

  • 1. Quinone methide formation from para isomers of methylphenol (cresol), ethylphenol, and isopropylphenol: relationship to toxicity.
    Thompson DC; Perera K; London R
    Chem Res Toxicol; 1995; 8(1):55-60. PubMed ID: 7703367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous hydrolysis of 4-trifluoromethylphenol to a quinone methide and subsequent protein alkylation.
    Thompson DC; Perera K; London R
    Chem Biol Interact; 2000 Apr; 126(1):1-14. PubMed ID: 10826650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cresol isomers: comparison of toxic potency in rat liver slices.
    Thompson DC; Perera K; Fisher R; Brendel K
    Toxicol Appl Pharmacol; 1994 Mar; 125(1):51-8. PubMed ID: 8128495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the mechanism of hepatotoxicity of 4-methylphenol (p-cresol): effects of deuterium labeling and ring substitution.
    Thompson DC; Perera K; London R
    Chem Biol Interact; 1996 Jun; 101(1):1-11. PubMed ID: 8665615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of DNA adducts by microsomal and peroxidase activation of p-cresol: role of quinone methide in DNA adduct formation.
    Gaikwad NW; Bodell WJ
    Chem Biol Interact; 2001 Dec; 138(3):217-29. PubMed ID: 11714480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 4-Hydroxylated metabolites of the antiestrogens tamoxifen and toremifene are metabolized to unusually stable quinone methides.
    Fan PW; Zhang F; Bolton JL
    Chem Res Toxicol; 2000 Jan; 13(1):45-52. PubMed ID: 10649966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of 4-alkyl substituents on the formation and reactivity of 2-methoxy-quinone methides: evidence that extended pi-conjugation dramatically stabilizes the quinone methide formed from eugenol.
    Bolton JL; Comeau E; Vukomanovic V
    Chem Biol Interact; 1995 Apr; 95(3):279-90. PubMed ID: 7728898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactivation of estrone and its catechol metabolites to quinoid-glutathione conjugates in rat liver microsomes.
    Iverson SL; Shen L; Anlar N; Bolton JL
    Chem Res Toxicol; 1996 Mar; 9(2):492-9. PubMed ID: 8839054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The enzymatic formation and chemical reactivity of quinone methides correlate with alkylphenol-induced toxicity in rat hepatocytes.
    Bolton JL; Valerio LG; Thompson JA
    Chem Res Toxicol; 1992; 5(6):816-22. PubMed ID: 1489934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioactivation of phencyclidine in rat and human liver microsomes and recombinant P450 2B enzymes: evidence for the formation of a novel quinone methide intermediate.
    Driscoll JP; Kornecki K; Wolkowski JP; Chupak L; Kalgutkar AS; O'Donnell JP
    Chem Res Toxicol; 2007 Oct; 20(10):1488-97. PubMed ID: 17892269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative metabolism, covalent binding and toxicity of BHT congeners in rat liver slices.
    Reed M; Fujiwara H; Thompson DC
    Chem Biol Interact; 2001 Nov; 138(2):155-70. PubMed ID: 11672698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioactivation of 4-methylphenol (p-cresol) via cytochrome P450-mediated aromatic oxidation in human liver microsomes.
    Yan Z; Zhong HM; Maher N; Torres R; Leo GC; Caldwell GW; Huebert N
    Drug Metab Dispos; 2005 Dec; 33(12):1867-76. PubMed ID: 16174805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. o-Methoxy-4-alkylphenols that form quinone methides of intermediate reactivity are the most toxic in rat liver slices.
    Thompson DC; Perera K; Krol ES; Bolton JL
    Chem Res Toxicol; 1995; 8(3):323-7. PubMed ID: 7578916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of the p-alkyl substituent on the isomerization of o-quinones to p-quinone methides: potential bioactivation mechanism for catechols.
    Iverson SL; Hu LQ; Vukomanovic V; Bolton JL
    Chem Res Toxicol; 1995 Jun; 8(4):537-44. PubMed ID: 7548733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic and structural requirements for metabolic activation of butylated hydroxytoluene analogs to their quinone methides, intermediates responsible for lung toxicity in mice.
    Yamamoto K; Kato S; Tajima K; Mizutani T
    Biol Pharm Bull; 1997 May; 20(5):571-3. PubMed ID: 9178942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of butylated hydroxytoluene to toxic metabolites. Factors influencing hydroxylation and quinone methide formation by hepatic and pulmonary microsomes.
    Bolton JL; Thompson JA
    Drug Metab Dispos; 1991; 19(2):467-72. PubMed ID: 1676656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies using structural analogs and inbred strain differences to support a role for quinone methide metabolites of butylated hydroxytoluene (BHT) in mouse lung tumor promotion.
    Thompson JA; Carlson TJ; Sun Y; Dwyer-Nield LD; Malkinson AM
    Toxicology; 2001 Mar; 160(1-3):197-205. PubMed ID: 11246140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism and toxicity of 4-hydroxyphenylacetone in rat liver slices: comparison with acetaminophen.
    Thompson DC; Perera K; London R
    Drug Metab Dispos; 1996 Aug; 24(8):866-71. PubMed ID: 8869821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for the bioactivation of 4-nonylphenol to quinone methide and ortho-benzoquinone metabolites in human liver microsomes.
    Deng P; Zhong D; Nan F; Liu S; Li D; Yuan T; Chen X; Zheng J
    Chem Res Toxicol; 2010 Oct; 23(10):1617-28. PubMed ID: 20843008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioactivation of tamoxifen to metabolite E quinone methide: reaction with glutathione and DNA.
    Fan PW; Bolton JL
    Drug Metab Dispos; 2001 Jun; 29(6):891-6. PubMed ID: 11353759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.