BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 7703437)

  • 1. Different classes of volume transmission signals exist in the central nervous system and are affected by metabolic signals, temperature gradients and pressure waves.
    Agnati LF; Cortelli P; Biagini G; Bjelke B; Fuxe K
    Neuroreport; 1994 Dec; 6(1):9-12. PubMed ID: 7703437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wiring and volume transmission in the central nervous system: the concept of closed and open synapses.
    Zoli M; Agnati LF
    Prog Neurobiol; 1996 Jul; 49(4):363-80. PubMed ID: 8888115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Volume versus wiring transmission in the brain: a new theoretical frame for neuropsychopharmacology.
    Agnati LF; Bjelke B; Fuxe K
    Med Res Rev; 1995 Jan; 15(1):33-45. PubMed ID: 7898168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of transmitter diffusion and flow versus extracellular vesicles in volume transmission in the brain neural-glial networks.
    Borroto-Escuela DO; Agnati LF; Bechter K; Jansson A; Tarakanov AO; Fuxe K
    Philos Trans R Soc Lond B Biol Sci; 2015 Jul; 370(1672):. PubMed ID: 26009762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The discovery of central monoamine neurons gave volume transmission to the wired brain.
    Fuxe K; Dahlström AB; Jonsson G; Marcellino D; Guescini M; Dam M; Manger P; Agnati L
    Prog Neurobiol; 2010 Feb; 90(2):82-100. PubMed ID: 19853007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volume transmission and its different forms in the central nervous system.
    Fuxe K; Borroto-Escuela DO; Romero-Fernandez W; Zhang WB; Agnati LF
    Chin J Integr Med; 2013 May; 19(5):323-9. PubMed ID: 23674109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy gradients for VT-signal migration in the CNS: studies on melanocortin receptors, mitochondrial uncoupling proteins and food intake.
    Agnati LF; Vergoni AV; Leo G; Genedani S; Franco R; Bertolini A; Fuxe K
    J Endocrinol Invest; 2004; 27(6 Suppl):23-34. PubMed ID: 15481801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volume Transmission in Central Dopamine and Noradrenaline Neurons and Its Astroglial Targets.
    Fuxe K; Agnati LF; Marcoli M; Borroto-Escuela DO
    Neurochem Res; 2015 Dec; 40(12):2600-14. PubMed ID: 25894681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intercellular communication in the brain: wiring versus volume transmission.
    Agnati LF; Zoli M; Strömberg I; Fuxe K
    Neuroscience; 1995 Dec; 69(3):711-26. PubMed ID: 8596642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The emergence of the volume transmission concept.
    Zoli M; Torri C; Ferrari R; Jansson A; Zini I; Fuxe K; Agnati LF
    Brain Res Brain Res Rev; 1998 May; 26(2-3):136-47. PubMed ID: 9651506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volume transmission and wiring transmission from cellular to molecular networks: history and perspectives.
    Agnati LF; Leo G; Zanardi A; Genedani S; Rivera A; Fuxe K; Guidolin D
    Acta Physiol (Oxf); 2006; 187(1-2):329-44. PubMed ID: 16734770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy gradients for the homeostatic control of brain ECF composition and for VT signal migration: introduction of the tide hypothesis.
    Agnati LF; Genedani S; Lenzi PL; Leo G; Mora F; Ferré S; Fuxe K
    J Neural Transm (Vienna); 2005 Jan; 112(1):45-63. PubMed ID: 15599604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular-vesicle type of volume transmission and tunnelling-nanotube type of wiring transmission add a new dimension to brain neuro-glial networks.
    Agnati LF; Fuxe K
    Philos Trans R Soc Lond B Biol Sci; 2014 Sep; 369(1652):. PubMed ID: 25135966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Communication and computation in the central nervous system.
    Benfenati F; Agnati LF
    Funct Neurol; 1991; 6(3):202-9. PubMed ID: 1683850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: wiring and volume transmission.
    Fuxe K; Dahlström A; Höistad M; Marcellino D; Jansson A; Rivera A; Diaz-Cabiale Z; Jacobsen K; Tinner-Staines B; Hagman B; Leo G; Staines W; Guidolin D; Kehr J; Genedani S; Belluardo N; Agnati LF
    Brain Res Rev; 2007 Aug; 55(1):17-54. PubMed ID: 17433836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of high-affinity receptors and membrane transporters in nonsynaptic communication and drug action in the central nervous system.
    Vizi ES
    Pharmacol Rev; 2000 Mar; 52(1):63-89. PubMed ID: 10699155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonsynaptic communication in the central nervous system.
    Vizi ES; Kiss JP; Lendvai B
    Neurochem Int; 2004 Sep; 45(4):443-51. PubMed ID: 15186910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding propagated sensation along meridians by volume transmission in peripheral tissue.
    Zhang WB; Zhao Y; Kjell F
    Chin J Integr Med; 2013 May; 19(5):330-9. PubMed ID: 23674110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new hypothesis for electrical transmission in the mammalian central nervous system.
    Hillman H
    Med Hypotheses; 1991 Mar; 34(3):220-4. PubMed ID: 1648164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endogenous presynaptic nitric oxide supports an anterograde signaling in the central nervous system.
    Fernández-Alvarez A; Gómez-Sena L; Fabbiani MG; Budelli R; Abudara V
    J Neurochem; 2011 Aug; 118(4):546-57. PubMed ID: 21644995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.