These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 7703519)

  • 21. Adenosine 5'-triphosphate promotes mineralization in differentiating chick limb-bud mesenchymal cell cultures.
    Boskey AL; Doty SB; Binderman I
    Microsc Res Tech; 1994 Aug; 28(6):492-504. PubMed ID: 7949395
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cell surface expression of stem cell antigen-1 (Sca-1) distinguishes osteo-, chondro-, and adipoprogenitors in fetal mouse calvaria.
    Steenhuis P; Pettway GJ; Ignelzi MA
    Calcif Tissue Int; 2008 Jan; 82(1):44-56. PubMed ID: 18175035
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Morphogenetic signals from chondrocytes promote chondrogenic and osteogenic differentiation of mesenchymal stem cells.
    Hwang NS; Varghese S; Puleo C; Zhang Z; Elisseeff J
    J Cell Physiol; 2007 Aug; 212(2):281-4. PubMed ID: 17520697
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alterations in the spatiotemporal expression pattern and function of N-cadherin inhibit cellular condensation and chondrogenesis of limb mesenchymal cells in vitro.
    DeLise AM; Tuan RS
    J Cell Biochem; 2002; 87(3):342-59. PubMed ID: 12397616
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of in vitro limb cartilage differentiation by syndecan-3 antibodies.
    Seghatoleslami MR; Kosher RA
    Dev Dyn; 1996 Sep; 207(1):114-9. PubMed ID: 8875081
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chondrogenic differentiation of murine embryonic stem cells: effects of culture conditions and dexamethasone.
    Tanaka H; Murphy CL; Murphy C; Kimura M; Kawai S; Polak JM
    J Cell Biochem; 2004 Oct; 93(3):454-62. PubMed ID: 15372628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tenascin-C is associated with early stages of chondrogenesis by chick mandibular ectomesenchymal cells in vivo and in vitro.
    Gluhak J; Mais A; Mina M
    Dev Dyn; 1996 Jan; 205(1):24-40. PubMed ID: 8770549
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A minimal common osteochondrocytic differentiation medium for the osteogenic and chondrogenic differentiation of bone marrow stromal cells in the construction of osteochondral graft.
    Li J; Mareddy S; Tan DM; Crawford R; Long X; Miao X; Xiao Y
    Tissue Eng Part A; 2009 Sep; 15(9):2481-90. PubMed ID: 19327021
    [TBL] [Abstract][Full Text] [Related]  

  • 29. N-CAM is not required for initiation of secondary chondrogenesis: the role of N-CAM in skeletal condensation and differentiation.
    Fang J; Hall BK
    Int J Dev Biol; 1999 Jul; 43(4):335-42. PubMed ID: 10470650
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis.
    Bosnakovski D; Mizuno M; Kim G; Takagi S; Okumura M; Fujinaga T
    Biotechnol Bioeng; 2006 Apr; 93(6):1152-63. PubMed ID: 16470881
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of movement and tissue interactions in the development and growth of bone and secondary cartilage in the clavicle of the embryonic chick.
    Hall BK
    J Embryol Exp Morphol; 1986 Apr; 93():133-52. PubMed ID: 3734681
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Supplemented eggshell restores calcium transport in chorioallantoic membrane of cultured shell-less chick embryos.
    Tuan RS
    J Embryol Exp Morphol; 1983 Apr; 74():119-31. PubMed ID: 6604121
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role for short-range interactions in the formation of cartilage and muscle masses in transfilter micromass cultures.
    Schramm CA; Reiter RS; Solursh M
    Dev Biol; 1994 Jun; 163(2):467-79. PubMed ID: 8200482
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Long-term in vitro analysis of limb cartilage development: involvement of Wnt signaling.
    Daumer KM; Tufan AC; Tuan RS
    J Cell Biochem; 2004 Oct; 93(3):526-41. PubMed ID: 15372624
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential effects of transforming growth factors beta 1, beta 2, beta 3 and beta 5 on chondrogenesis in mouse limb bud mesenchymal cells.
    Chimal-Monroy J; Díaz de León L
    Int J Dev Biol; 1997 Feb; 41(1):91-102. PubMed ID: 9074941
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alcohol promotes in vitro chondrogenesis in embryonic facial mesenchyme.
    Hoffman LM; Kulyk WM
    Int J Dev Biol; 1999 Mar; 43(2):167-74. PubMed ID: 10235393
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression of collagen type transcripts in chick embryonic bone detected by in situ cDNA-mRNA hybridization.
    McDonald SA; Tuan RS
    Dev Biol; 1989 May; 133(1):221-34. PubMed ID: 2468543
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BMP-6 accelerates both chondrogenesis and mineral maturation in differentiating chick limb-bud mesenchymal cell cultures.
    Boskey AL; Paschalis EP; Binderman I; Doty SB
    J Cell Biochem; 2002; 84(3):509-19. PubMed ID: 11813256
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Successive formative stages of precartilaginous mesenchymal condensations in vitro: modulation of cell adhesion by Wnt-7A and BMP-2.
    Stott NS; Jiang TX; Chuong CM
    J Cell Physiol; 1999 Sep; 180(3):314-24. PubMed ID: 10430171
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of chondrogenic tissue in programmed cell death and BMP expression in chick limb buds.
    Omi M; Sato-Maeda M; Ide H
    Int J Dev Biol; 2000 Jun; 44(4):381-8. PubMed ID: 10949047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.