These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 7703591)

  • 1. The inverse problem of electrocardiology: the performance of inversion techniques as a function of patient anatomy.
    Johnston PR; Kilpatrick D
    Math Biosci; 1995 Apr; 126(2):125-45. PubMed ID: 7703591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of potential- and activation-based formulations for the inverse problem of electrocardiology.
    Cheng LK; Bodley JM; Pullan AJ
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):11-22. PubMed ID: 12617520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The inverse problem of electrocardiography: a solution in terms of single- and double-layer sources of the epicardial surface.
    Horácek BM; Clements JC
    Math Biosci; 1997 Sep; 144(2):119-54. PubMed ID: 9258003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inverse electrocardiographic transformations: dependence on the number of epicardial regions and body surface data points.
    Johnston PR; Walker SJ; Hyttinen JA; Kilpatrick D
    Math Biosci; 1994 Apr; 120(2):165-87. PubMed ID: 8204983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vector expansion techniques for the inverse problem of electrocardiography: application to a realistic heart-torso geometry.
    Throne RD; Olson LG; Windle JR
    Biomed Sci Instrum; 1996; 32():101-6. PubMed ID: 8672655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noninvasive recovery of epicardial potentials in a realistic heart-torso geometry. Normal sinus rhythm.
    Messinger-Rapport BJ; Rudy Y
    Circ Res; 1990 Apr; 66(4):1023-39. PubMed ID: 2317885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive local regularization methods for the inverse ECG problem.
    Johnson CR; MacLeod RS
    Prog Biophys Mol Biol; 1998; 69(2-3):405-23. PubMed ID: 9785948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of errors in assumed conductivities and geometry on numerical solutions to the inverse problem of electrocardiography.
    Throne RD; Olson LG
    IEEE Trans Biomed Eng; 1995 Dec; 42(12):1192-200. PubMed ID: 8550061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Higher order regularization techniques for inverse electrocardiography.
    Throne RD; Olson LG
    Biomed Sci Instrum; 1997; 34():257-62. PubMed ID: 9603049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of different choices for the regularization parameter in inverse electrocardiography models.
    Shou G; Jiang M; Xia L; Wei Q; Liu F; Crozier S
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3903-6. PubMed ID: 17945815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational issues of importance to the inverse recovery of epicardial potentials in a realistic heart-torso geometry.
    Messinger-Rapport BJ; Rudy Y
    Math Biosci; 1989 Nov; 97(1):85-120. PubMed ID: 2520207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of experimental and modeling errors on electrocardiographic inverse formulations.
    Cheng LK; Bodley JM; Pullan AJ
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):23-32. PubMed ID: 12617521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The inverse problem in electrocardiography: solutions in terms of epicardial potentials.
    Rudy Y; Messinger-Rapport BJ
    Crit Rev Biomed Eng; 1988; 16(3):215-68. PubMed ID: 3064971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving Tikhonov regularization with linearly constrained optimization: application to the inverse epicardial potential solution.
    Iakovidis I; Gulrajani RM
    Math Biosci; 1992 Nov; 112(1):55-80. PubMed ID: 1421775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination of the LSQR method and a genetic algorithm for solving the electrocardiography inverse problem.
    Jiang M; Xia L; Shou G; Tang M
    Phys Med Biol; 2007 Mar; 52(5):1277-94. PubMed ID: 17301454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of noise and errors in heart size on numerical techniques for the inverse problem of electrocardiography.
    Throne RD; Olson LG
    Biomed Sci Instrum; 1995; 31():71-6. PubMed ID: 7654987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Robust Algorithm for Selecting Optimal Regularization Parameter Based on Bilateral Accumulative Area.
    Chen R; Li J; Wu J
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4893-4896. PubMed ID: 31946957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Truncated total least squares: a new regularization method for the solution of ECG inverse problems.
    Shou G; Xia L; Jiang M; Wei Q; Liu F; Crozier S
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1327-35. PubMed ID: 18390323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mathematical basis for imaging cardia electrical function.
    Greensite F
    Crit Rev Biomed Eng; 1994; 22(5-6):347-99. PubMed ID: 8631194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new method for regularization parameter determination in the inverse problem of electrocardiography.
    Johnston PR; Gulrajani RM
    IEEE Trans Biomed Eng; 1997 Jan; 44(1):19-39. PubMed ID: 9214781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.