These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 7703838)

  • 1. Common structural features of the luxF protein and the subunits of bacterial luciferase: evidence for a (beta alpha)8 fold in luciferase.
    Moore SA; James MN
    Protein Sci; 1994 Nov; 3(11):1914-26. PubMed ID: 7703838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of a flavoprotein related to the subunits of bacterial luciferase.
    Moore SA; James MN; O'Kane DJ; Lee J
    EMBO J; 1993 May; 12(5):1767-74. PubMed ID: 8491169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional model of the alpha-subunit of bacterial luciferase.
    Sandalova T; Lindqvist Y
    Proteins; 1995 Oct; 23(2):241-55. PubMed ID: 8592705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and biochemical properties of LuxF from Photobacterium leiognathi.
    Bergner T; Tabib CR; Winkler A; Stipsits S; Kayer H; Lee J; Malthouse JP; Mayhew S; Müller F; Gruber K; Macheroux P
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1466-75. PubMed ID: 26209460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new lux gene in bioluminescent bacteria codes for a protein homologous to the bacterial luciferase subunits.
    Soly RR; Mancini JA; Ferri SR; Boylan M; Meighen EA
    Biochem Biophys Res Commun; 1988 Aug; 155(1):351-8. PubMed ID: 3415691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural refinement of the non-fluorescent flavoprotein from Photobacterium leiognathi at 1.60 A resolution.
    Moore SA; James MN
    J Mol Biol; 1995 May; 249(1):195-214. PubMed ID: 7776372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The refined crystal structure of Bacillus cereus oligo-1,6-glucosidase at 2.0 A resolution: structural characterization of proline-substitution sites for protein thermostabilization.
    Watanabe K; Hata Y; Kizaki H; Katsube Y; Suzuki Y
    J Mol Biol; 1997 May; 269(1):142-53. PubMed ID: 9193006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interspecific luciferase beta subunit hybrids between Vibrio harveyi, Vibrio fischeri and Photobacterium leiognathi.
    Almashanu S; Gendler I; Hadar R; Kuhn J
    Protein Eng; 1996 Sep; 9(9):803-9. PubMed ID: 8888147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The X-ray structure of Escherichia coli enoyl reductase with bound NAD+ at 2.1 A resolution.
    Baldock C; Rafferty JB; Stuitje AR; Slabas AR; Rice DW
    J Mol Biol; 1998 Dec; 284(5):1529-46. PubMed ID: 9878369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The 1.5-A resolution crystal structure of bacterial luciferase in low salt conditions.
    Fisher AJ; Thompson TB; Thoden JB; Baldwin TO; Rayment I
    J Biol Chem; 1996 Sep; 271(36):21956-68. PubMed ID: 8703001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recurrent alpha beta loop structures in TIM barrel motifs show a distinct pattern of conserved structural features.
    Scheerlinck JP; Lasters I; Claessens M; De Maeyer M; Pio F; Delhaise P; Wodak SJ
    Proteins; 1992 Apr; 12(4):299-313. PubMed ID: 1374562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallization of Photobacterium leiognathi non-fluorescent flavoprotein, an unusual flavoprotein with limited sequence identity to bacterial luciferase.
    Moore SA; James MN; O'Kane DJ; Lee J
    J Mol Biol; 1992 Mar; 224(2):523-6. PubMed ID: 1560468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the beta 2 homodimer of bacterial luciferase from Vibrio harveyi: X-ray analysis of a kinetic protein folding trap.
    Thoden JB; Holden HM; Fisher AJ; Sinclair JF; Wesenberg G; Baldwin TO; Rayment I
    Protein Sci; 1997 Jan; 6(1):13-23. PubMed ID: 9007973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative model of EutB from coenzyme B12-dependent ethanolamine ammonia-lyase reveals a beta8alpha8, TIM-barrel fold and radical catalytic site structural features.
    Sun L; Warncke K
    Proteins; 2006 Aug; 64(2):308-19. PubMed ID: 16688781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved secondary structure predictions for a nicotinic receptor subunit: incorporation of solvent accessibility and experimental data into a two-dimensional representation.
    Le Novère N; Corringer PJ; Changeux JP
    Biophys J; 1999 May; 76(5):2329-45. PubMed ID: 10233052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of secondary structure by evolutionary comparison: application to the alpha subunit of tryptophan synthase.
    Crawford IP; Niermann T; Kirschner K
    Proteins; 1987; 2(2):118-29. PubMed ID: 3328860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Refined structure of spinach glycolate oxidase at 2 A resolution.
    Lindqvist Y
    J Mol Biol; 1989 Sep; 209(1):151-66. PubMed ID: 2681790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mouse ApoM displays an unprecedented seven-stranded lipocalin fold: folding decoy or alternative native fold?
    Sevvana M; Kassler K; Ahnström J; Weiler S; Dahlbäck B; Sticht H; Muller YA
    J Mol Biol; 2010 Dec; 404(3):363-71. PubMed ID: 20932978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of a putative type I restriction-modification S subunit from Mycoplasma genitalium.
    Calisto BM; Pich OQ; Piñol J; Fita I; Querol E; Carpena X
    J Mol Biol; 2005 Aug; 351(4):749-62. PubMed ID: 16038930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary origins of bacterial bioluminescence.
    O'Kane DJ; Prasher DC
    Mol Microbiol; 1992 Feb; 6(4):443-9. PubMed ID: 1560772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.