These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
605 related articles for article (PubMed ID: 7704108)
1. Sprouting of central noradrenergic fibers in the dentate gyrus following combined lesions of its entorhinal and septal afferents. Peterson GM Hippocampus; 1994 Dec; 4(6):635-48. PubMed ID: 7704108 [TBL] [Abstract][Full Text] [Related]
2. Enhanced but delayed axonal sprouting of the commissural/associational pathway following a combined entorhinal cortex/fimbria fornix lesion. Schauwecker PE; McNeill TH J Comp Neurol; 1995 Jan; 351(3):453-64. PubMed ID: 7535807 [TBL] [Abstract][Full Text] [Related]
3. Histochemical evidence of altered development of cholinergic fibers in the rat dentate gyrus following lesions. II. Effects of partial entorhinal and simultaneous multiple lesions. Nadler JV; Cotman CW; Paoletti C; Lynch GS J Comp Neurol; 1977 Feb; 171(4):589-604. PubMed ID: 833359 [TBL] [Abstract][Full Text] [Related]
4. Nerve growth factor influences the distribution of sympathetic sprouting into the hippocampal formation by implanted superior cervical ganglia. Conner JM; Varon S Exp Neurol; 1994 Nov; 130(1):15-23. PubMed ID: 7821390 [TBL] [Abstract][Full Text] [Related]
5. Transneuronal changes in dendrites of GABAergic parvalbumin-containing neurons of the rat fascia dentata following entorhinal lesion. Nitsch R; Frotscher M Hippocampus; 1993 Oct; 3(4):481-90. PubMed ID: 8269039 [TBL] [Abstract][Full Text] [Related]
6. Changes in nerve growth factor immunoreactivity following entorhinal cortex lesions: possible molecular mechanism regulating cholinergic sprouting. Conner JM; Fass-Holmes B; Varon S J Comp Neurol; 1994 Jul; 345(3):409-18. PubMed ID: 7929909 [TBL] [Abstract][Full Text] [Related]
7. Histochemical evidence of altered development of cholinergic fibers in the rat dentate gyrus following lesions. I. Time course after complete unilateral entorhinal lesion at various ages. Nadler JV; Cotman CW; Lynch GS J Comp Neurol; 1977 Feb; 171(4):561-87. PubMed ID: 833358 [TBL] [Abstract][Full Text] [Related]
8. Stereological analysis of the reorganization of the dentate gyrus following entorhinal cortex lesion in mice. Phinney AL; Calhoun ME; Woods AG; Deller T; Jucker M Eur J Neurosci; 2004 Apr; 19(7):1731-40. PubMed ID: 15078547 [TBL] [Abstract][Full Text] [Related]
9. Lesion-induced synapse reorganization in the hippocampus of cats: sprouting of entorhinal, commissural/associational, and mossy fiber projections after unilateral entorhinal cortex lesions, with comments on the normal organization of these pathways. Steward O Hippocampus; 1992 Jul; 2(3):247-68. PubMed ID: 1284974 [TBL] [Abstract][Full Text] [Related]
10. Lesion-induced sprouting of hippocampal mossy fiber collaterals to the fascia dentata in developing and adult rats. Laurberg S; Zimmer J J Comp Neurol; 1981 Aug; 200(3):433-59. PubMed ID: 7276246 [TBL] [Abstract][Full Text] [Related]
11. Cholinergic innervation of the primate hippocampal formation: II. Effects of fimbria/fornix transection. Alonso JR; U HS; Amaral DG J Comp Neurol; 1996 Nov; 375(4):527-51. PubMed ID: 8930785 [TBL] [Abstract][Full Text] [Related]
12. The effects of neonatal 6-hydroxydopamine treatment on morphological plasticity in the dentate gyrus of the rat following entorhinal lesions. Amaral DG; Avendaño C; Cowan WM J Comp Neurol; 1980 Nov; 194(1):171-91. PubMed ID: 7440794 [TBL] [Abstract][Full Text] [Related]
13. In vivo evidence for a hippocampal adrenergic neuronotrophic factor specifically released on septal deafferentation. Björklund A; Stenevi U Brain Res; 1981 Dec; 229(2):403-28. PubMed ID: 7306819 [TBL] [Abstract][Full Text] [Related]
14. Dendritic remodeling of dentate granule cells following a combined entorhinal cortex/fimbria fornix lesion. Schauwecker PE; McNeill TH Exp Neurol; 1996 Sep; 141(1):145-53. PubMed ID: 8797677 [TBL] [Abstract][Full Text] [Related]
15. Accelerated rates of synaptogenesis by "sprouting" afferents in the immature hippocampal formation. Gall C; McWilliams R; Lynch G J Comp Neurol; 1980 Oct; 193(4):1047-61. PubMed ID: 7430436 [TBL] [Abstract][Full Text] [Related]
16. Correlated axonal sprouting and dendritic spine formation during kainate-induced neuronal morphogenesis in the dentate gyrus of adult mice. Suzuki F; Makiura Y; Guilhem D; Sørensen JC; Onteniente B Exp Neurol; 1997 May; 145(1):203-13. PubMed ID: 9184122 [TBL] [Abstract][Full Text] [Related]
17. Activation of perforant path neurons to field CA1 by hippocampal projections. Bartesaghi R; Gessi T Hippocampus; 2003; 13(2):235-49. PubMed ID: 12699331 [TBL] [Abstract][Full Text] [Related]
18. Nerve growth factor receptor immunoreactivity in the rat septohippocampal pathway: a light and electron microscope investigation. Kawaja MD; Gage FH J Comp Neurol; 1991 May; 307(3):517-29. PubMed ID: 1649845 [TBL] [Abstract][Full Text] [Related]
19. Distribution and origin of vesicular glutamate transporter 2-immunoreactive fibers in the rat hippocampus. Halasy K; Hajszan T; Kovács EG; Lam TT; Leranth C Hippocampus; 2004; 14(7):908-18. PubMed ID: 15382259 [TBL] [Abstract][Full Text] [Related]
20. Development of afferent fiber lamination in the infrapyramidal blade of the rat dentate gyrus. Tamamaki N J Comp Neurol; 1999 Aug; 411(2):257-66. PubMed ID: 10404251 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]