BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

609 related articles for article (PubMed ID: 7704108)

  • 1. Sprouting of central noradrenergic fibers in the dentate gyrus following combined lesions of its entorhinal and septal afferents.
    Peterson GM
    Hippocampus; 1994 Dec; 4(6):635-48. PubMed ID: 7704108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced but delayed axonal sprouting of the commissural/associational pathway following a combined entorhinal cortex/fimbria fornix lesion.
    Schauwecker PE; McNeill TH
    J Comp Neurol; 1995 Jan; 351(3):453-64. PubMed ID: 7535807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histochemical evidence of altered development of cholinergic fibers in the rat dentate gyrus following lesions. II. Effects of partial entorhinal and simultaneous multiple lesions.
    Nadler JV; Cotman CW; Paoletti C; Lynch GS
    J Comp Neurol; 1977 Feb; 171(4):589-604. PubMed ID: 833359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nerve growth factor influences the distribution of sympathetic sprouting into the hippocampal formation by implanted superior cervical ganglia.
    Conner JM; Varon S
    Exp Neurol; 1994 Nov; 130(1):15-23. PubMed ID: 7821390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transneuronal changes in dendrites of GABAergic parvalbumin-containing neurons of the rat fascia dentata following entorhinal lesion.
    Nitsch R; Frotscher M
    Hippocampus; 1993 Oct; 3(4):481-90. PubMed ID: 8269039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in nerve growth factor immunoreactivity following entorhinal cortex lesions: possible molecular mechanism regulating cholinergic sprouting.
    Conner JM; Fass-Holmes B; Varon S
    J Comp Neurol; 1994 Jul; 345(3):409-18. PubMed ID: 7929909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histochemical evidence of altered development of cholinergic fibers in the rat dentate gyrus following lesions. I. Time course after complete unilateral entorhinal lesion at various ages.
    Nadler JV; Cotman CW; Lynch GS
    J Comp Neurol; 1977 Feb; 171(4):561-87. PubMed ID: 833358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stereological analysis of the reorganization of the dentate gyrus following entorhinal cortex lesion in mice.
    Phinney AL; Calhoun ME; Woods AG; Deller T; Jucker M
    Eur J Neurosci; 2004 Apr; 19(7):1731-40. PubMed ID: 15078547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lesion-induced synapse reorganization in the hippocampus of cats: sprouting of entorhinal, commissural/associational, and mossy fiber projections after unilateral entorhinal cortex lesions, with comments on the normal organization of these pathways.
    Steward O
    Hippocampus; 1992 Jul; 2(3):247-68. PubMed ID: 1284974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lesion-induced sprouting of hippocampal mossy fiber collaterals to the fascia dentata in developing and adult rats.
    Laurberg S; Zimmer J
    J Comp Neurol; 1981 Aug; 200(3):433-59. PubMed ID: 7276246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholinergic innervation of the primate hippocampal formation: II. Effects of fimbria/fornix transection.
    Alonso JR; U HS; Amaral DG
    J Comp Neurol; 1996 Nov; 375(4):527-51. PubMed ID: 8930785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of neonatal 6-hydroxydopamine treatment on morphological plasticity in the dentate gyrus of the rat following entorhinal lesions.
    Amaral DG; Avendaño C; Cowan WM
    J Comp Neurol; 1980 Nov; 194(1):171-91. PubMed ID: 7440794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo evidence for a hippocampal adrenergic neuronotrophic factor specifically released on septal deafferentation.
    Björklund A; Stenevi U
    Brain Res; 1981 Dec; 229(2):403-28. PubMed ID: 7306819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dendritic remodeling of dentate granule cells following a combined entorhinal cortex/fimbria fornix lesion.
    Schauwecker PE; McNeill TH
    Exp Neurol; 1996 Sep; 141(1):145-53. PubMed ID: 8797677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerated rates of synaptogenesis by "sprouting" afferents in the immature hippocampal formation.
    Gall C; McWilliams R; Lynch G
    J Comp Neurol; 1980 Oct; 193(4):1047-61. PubMed ID: 7430436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlated axonal sprouting and dendritic spine formation during kainate-induced neuronal morphogenesis in the dentate gyrus of adult mice.
    Suzuki F; Makiura Y; Guilhem D; Sørensen JC; Onteniente B
    Exp Neurol; 1997 May; 145(1):203-13. PubMed ID: 9184122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of perforant path neurons to field CA1 by hippocampal projections.
    Bartesaghi R; Gessi T
    Hippocampus; 2003; 13(2):235-49. PubMed ID: 12699331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nerve growth factor receptor immunoreactivity in the rat septohippocampal pathway: a light and electron microscope investigation.
    Kawaja MD; Gage FH
    J Comp Neurol; 1991 May; 307(3):517-29. PubMed ID: 1649845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution and origin of vesicular glutamate transporter 2-immunoreactive fibers in the rat hippocampus.
    Halasy K; Hajszan T; Kovács EG; Lam TT; Leranth C
    Hippocampus; 2004; 14(7):908-18. PubMed ID: 15382259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of afferent fiber lamination in the infrapyramidal blade of the rat dentate gyrus.
    Tamamaki N
    J Comp Neurol; 1999 Aug; 411(2):257-66. PubMed ID: 10404251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.