These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 7704263)
21. Sequence analysis and functional studies of a chromosomal region of alkaliphilic Bacillus firmus OF4 encoding an ABC-type transporter with similarity of sequence and Na+ exclusion capacity to the Bacillus subtilis NatAB transporter. Wei Y; Guffanti AA; Krulwich TA Extremophiles; 1999 May; 3(2):113-20. PubMed ID: 10356997 [TBL] [Abstract][Full Text] [Related]
22. Sequencing of a 65 kb region of the Bacillus subtilis genome containing the lic and cel loci, and creation of a 177 kb contig covering the gnt-sacXY region. Yoshida K; Shindo K; Sano H; Seki S; Fujimura M; Yanai N; Miwa Y; Fujita Y Microbiology (Reading); 1996 Nov; 142 ( Pt 11)():3113-23. PubMed ID: 8969509 [TBL] [Abstract][Full Text] [Related]
23. Genetic and physical maps of Klebsiella aerogenes genes for histidine utilization (hut). Boylan SA; Bender RA Mol Gen Genet; 1984; 193(1):99-103. PubMed ID: 6361501 [TBL] [Abstract][Full Text] [Related]
24. The pyrimidine biosynthesis operon of the thermophile Bacillus caldolyticus includes genes for uracil phosphoribosyltransferase and uracil permease. Ghim SY; Neuhard J J Bacteriol; 1994 Jun; 176(12):3698-707. PubMed ID: 8206848 [TBL] [Abstract][Full Text] [Related]
25. Activation of the Bacillus subtilis hut operon at the onset of stationary growth phase in nutrient sporulation medium results primarily from the relief of amino acid repression of histidine transport. Atkinson MR; Wray LV; Fisher SH J Bacteriol; 1993 Jul; 175(14):4282-9. PubMed ID: 7687247 [TBL] [Abstract][Full Text] [Related]
26. A gene required for nutritional repression of the Bacillus subtilis dipeptide permease operon. Slack FJ; Serror P; Joyce E; Sonenshein AL Mol Microbiol; 1995 Feb; 15(4):689-702. PubMed ID: 7783641 [TBL] [Abstract][Full Text] [Related]
27. A 23911 bp region of the Bacillus subtilis genome comprising genes located upstream and downstream of the lev operon. Parro V; San Román M; Galindo I; Purnelle B; Bolotin A; Sorokin A; Mellado RP Microbiology (Reading); 1997 Apr; 143 ( Pt 4)():1321-1326. PubMed ID: 9141695 [TBL] [Abstract][Full Text] [Related]
28. Bacillus subtilis genome project: cloning and sequencing of the 97 kb region from 325 degrees to 333 degrees. Glaser P; Kunst F; Arnaud M; Coudart MP; Gonzales W; Hullo MF; Ionescu M; Lubochinsky B; Marcelino L; Moszer I Mol Microbiol; 1993 Oct; 10(2):371-84. PubMed ID: 7934828 [TBL] [Abstract][Full Text] [Related]
29. Insights into anti-termination regulation of the hut operon in Bacillus subtilis: importance of the dual RNA-binding surfaces of HutP. Gopinath SC; Balasundaresan D; Kumarevel T; Misono TS; Mizuno H; Kumar PK Nucleic Acids Res; 2008 Jun; 36(10):3463-73. PubMed ID: 18445631 [TBL] [Abstract][Full Text] [Related]
30. Crystal structure of activated HutP; an RNA binding protein that regulates transcription of the hut operon in Bacillus subtilis. Kumarevel T; Fujimoto Z; Karthe P; Oda M; Mizuno H; Kumar PK Structure; 2004 Jul; 12(7):1269-80. PubMed ID: 15242603 [TBL] [Abstract][Full Text] [Related]
31. New beta-glucoside (bgl) genes in Bacillus subtilis: the bglP gene product has both transport and regulatory functions similar to those of BglF, its Escherichia coli homolog. Le Coq D; Lindner C; Krüger S; Steinmetz M; Stülke J J Bacteriol; 1995 Mar; 177(6):1527-35. PubMed ID: 7883710 [TBL] [Abstract][Full Text] [Related]
32. Cloning and sequencing of a 27.8-kb nucleotide sequence of the 79 degrees-81 degrees region of the Bacillus subtilis genome containing the sspE locus. Yamamoto H; Uchiyama S; Sekiguchi J DNA Res; 1996 Aug; 3(4):257-62. PubMed ID: 8946165 [TBL] [Abstract][Full Text] [Related]
33. Characterization of a Snorhizobium meliloti ATP-binding cassette histidine transporter also involved in betaine and proline uptake. Boncompagni E; Dupont L; Mignot T; Osteräs M; Lambert A; Poggi MC; Le Rudulier D J Bacteriol; 2000 Jul; 182(13):3717-25. PubMed ID: 10850986 [TBL] [Abstract][Full Text] [Related]
34. Cloning and expression in Pseudomonas putida of two of the histidine utilization genes from Rhizobium fredii. Burke RR; Heard DD; Nieuwkoop AJ Curr Microbiol; 1997 Jan; 34(1):55-60. PubMed ID: 8939803 [TBL] [Abstract][Full Text] [Related]
35. Cloning and sequencing of a 35.7 kb in the 70 degree-73 degree region of the Bacillus subtilis genome reveal genes for a new two-component system, three spore germination proteins, an iron uptake system and a general stress response protein. Yamamoto H; Uchiyama S; Nugroho FA; Sekiguchi J Gene; 1997 Jul; 194(2):191-9. PubMed ID: 9272861 [TBL] [Abstract][Full Text] [Related]
36. Histidine utilisation operon (hut) is upregulated at low temperature in the antarctic psychrotrophic bacterium Pseudomonas syringae. Kannan K; Janiyani KL; Shivaji S; Ray MK FEMS Microbiol Lett; 1998 Apr; 161(1):7-14. PubMed ID: 9561727 [TBL] [Abstract][Full Text] [Related]
37. Identification of important chemical groups of the hut mRNA for HutP interactions that regulate the hut operon in Bacillus subtilis. Kumarevel TS; Gopinath SC; Nishikawa S; Mizuno H; Kumar PK Nucleic Acids Res; 2004; 32(13):3904-12. PubMed ID: 15273277 [TBL] [Abstract][Full Text] [Related]
38. Regulation of histidine and proline degradation enzymes by amino acid availability in Bacillus subtilis. Atkinson MR; Wray LV; Fisher SH J Bacteriol; 1990 Sep; 172(9):4758-65. PubMed ID: 2118500 [TBL] [Abstract][Full Text] [Related]
39. Gene order of the histidine utilization (hut) operons in Klebsiella aerogenes. Goldberg RB; Magasanik B J Bacteriol; 1975 Jun; 122(3):1025-31. PubMed ID: 238937 [TBL] [Abstract][Full Text] [Related]