These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 7704269)
1. In Saccharomyces cerevisiae deletion of phosphoglucose isomerase can be suppressed by increased activities of enzymes of the hexose monophosphate pathway. Dickinson JR; Sobanski MA; Hewlins MJ Microbiology (Reading); 1995 Feb; 141 ( Pt 2)():385-91. PubMed ID: 7704269 [TBL] [Abstract][Full Text] [Related]
2. The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant. Boles E; Lehnert W; Zimmermann FK Eur J Biochem; 1993 Oct; 217(1):469-77. PubMed ID: 7901008 [TBL] [Abstract][Full Text] [Related]
3. Mutations suppressing the effects of a deletion of the phosphoglucose isomerase gene PGI1 in Saccharomyces cerevisiae. Aguilera A Curr Genet; 1987; 11(6-7):429-34. PubMed ID: 3329972 [TBL] [Abstract][Full Text] [Related]
4. Deletion of the phosphoglucose isomerase structural gene makes growth and sporulation glucose dependent in Saccharomyces cerevisiae. Aguilera A Mol Gen Genet; 1986 Aug; 204(2):310-6. PubMed ID: 3020369 [TBL] [Abstract][Full Text] [Related]
5. Glucose utilization of strains lacking PGI1 and expressing a transhydrogenase suggests differences in the pentose phosphate capacity among Saccharomyces cerevisiae strains. Heux S; Cadiere A; Dequin S FEMS Yeast Res; 2008 Mar; 8(2):217-24. PubMed ID: 18036177 [TBL] [Abstract][Full Text] [Related]
6. Biochemical and genetic studies on the function of, and relationship between, the PGI1- and CDC30-encoded phosphoglucose isomerases in Saccharomyces cerevisiae. Dickinson JR J Gen Microbiol; 1991 Apr; 137(4):765-70. PubMed ID: 1856676 [TBL] [Abstract][Full Text] [Related]
7. Genetic studies with a phosphoglucose isomerase mutant of Saccharomyces cerevisiae. Maitra PK; Lobo Z Mol Gen Genet; 1977 Nov; 156(1):55-60. PubMed ID: 340892 [TBL] [Abstract][Full Text] [Related]
8. Enhancing the flux of D-glucose to the pentose phosphate pathway in Saccharomyces cerevisiae for the production of D-ribose and ribitol. Toivari MH; Maaheimo H; Penttilä M; Ruohonen L Appl Microbiol Biotechnol; 2010 Jan; 85(3):731-9. PubMed ID: 19711072 [TBL] [Abstract][Full Text] [Related]
9. Characterization of mutations that overcome the toxic effect of glucose on phosphoglucose isomerase less strains of Saccharomyces cerevisiae. Gamo FJ; Portillo F; Gancedo C FEMS Microbiol Lett; 1993 Feb; 106(3):233-7. PubMed ID: 8454188 [TBL] [Abstract][Full Text] [Related]
10. The glucose-6-phosphate-isomerase reaction is essential for normal glucose repression in Saccharomyces cerevisiae. Sierkstra LN; Silljé HH; Verbakel JM; Verrips CT Eur J Biochem; 1993 May; 214(1):121-7. PubMed ID: 8508783 [TBL] [Abstract][Full Text] [Related]
11. Open reading frames in the antisense strands of genes coding for glycolytic enzymes in Saccharomyces cerevisiae. Boles E; Zimmermann FK Mol Gen Genet; 1994 May; 243(4):363-8. PubMed ID: 8202080 [TBL] [Abstract][Full Text] [Related]
12. A phosphoglucose isomerase gene is involved in the Rag phenotype of the yeast Kluyveromyces lactis. Goffrini P; Wésolowski-Louvel M; Ferrero I Mol Gen Genet; 1991 Sep; 228(3):401-9. PubMed ID: 1896011 [TBL] [Abstract][Full Text] [Related]
13. Different signals control the activation of glycolysis in the yeast Saccharomyces cerevisiae. Boles E; Heinisch J; Zimmermann FK Yeast; 1993 Jul; 9(7):761-70. PubMed ID: 8368010 [TBL] [Abstract][Full Text] [Related]
14. Reoxidation of the NADPH produced by the pentose phosphate pathway is necessary for the utilization of glucose by Kluyveromyces lactis rag2 mutants. González Siso MI; Freire Picos MA; Cerdán ME FEBS Lett; 1996 May; 387(1):7-10. PubMed ID: 8654569 [TBL] [Abstract][Full Text] [Related]
15. Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts. Hua Q; Yang C; Baba T; Mori H; Shimizu K J Bacteriol; 2003 Dec; 185(24):7053-67. PubMed ID: 14645264 [TBL] [Abstract][Full Text] [Related]
16. Saccharomyces cerevisiae phosphoglucose isomerase and fructose bisphosphate aldolase can be replaced functionally by the corresponding enzymes of Escherichia coli and Drosophila melanogaster. Boles E; Zimmermann FK Curr Genet; 1993 Mar; 23(3):187-91. PubMed ID: 8435847 [TBL] [Abstract][Full Text] [Related]
17. Transcription factor Stb5p is essential for acetaldehyde tolerance in Saccharomyces cerevisiae. Matsufuji Y; Nakagawa T; Fujimura S; Tani A; Nakagawa J J Basic Microbiol; 2010 Oct; 50(5):494-8. PubMed ID: 20806246 [TBL] [Abstract][Full Text] [Related]
18. The structure and regulation of phosphoglucose isomerase in Saccharomyces cerevisiae. Green JB; Wright AP; Cheung WY; Lancashire WE; Hartley BS Mol Gen Genet; 1988 Dec; 215(1):100-6. PubMed ID: 3071735 [TBL] [Abstract][Full Text] [Related]
19. Deletion of pgi alters tryptophan biosynthesis in a genetically engineered strain of Escherichia coli. Mascarenhas D; Ashworth DJ; Chen CS Appl Environ Microbiol; 1991 Oct; 57(10):2995-9. PubMed ID: 1746959 [TBL] [Abstract][Full Text] [Related]
20. Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress. Juhnke H; Krems B; Kötter P; Entian KD Mol Gen Genet; 1996 Sep; 252(4):456-64. PubMed ID: 8879247 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]