These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 7704294)

  • 1. Processing and analysis of form, colour and binocular disparity in the human brain: functional anatomy by positron emission tomography.
    Gulyás B; Roland PE
    Eur J Neurosci; 1994 Dec; 6(12):1811-28. PubMed ID: 7704294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortical fields participating in form and colour discrimination in the human brain.
    Gulyás B; Roland PE
    Neuroreport; 1991 Oct; 2(10):585-8. PubMed ID: 1756239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual form discrimination from color or motion cues: functional anatomy by positron emission tomography.
    Gulyás B; Heywood CA; Popplewell DA; Roland PE; Cowey A
    Proc Natl Acad Sci U S A; 1994 Oct; 91(21):9965-9. PubMed ID: 7937927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binocular disparity discrimination in human cerebral cortex: functional anatomy by positron emission tomography.
    Gulyás B; Roland PE
    Proc Natl Acad Sci U S A; 1994 Feb; 91(4):1239-43. PubMed ID: 8108394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual exploration of form and position with identical stimuli: functional anatomy with PET.
    Vidnyánszky Z; Gulyás B; Roland PE
    Hum Brain Mapp; 2000 Oct; 11(2):104-16. PubMed ID: 11061337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual form discrimination from luminance or disparity cues: functional anatomy by PET.
    Gulyás B; Roland PE; Heywood CA; Popplewell DA; Cowey A
    Neuroreport; 1994 Nov; 5(17):2367-71. PubMed ID: 7881060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual form discrimination from texture cues: a PET study.
    Gulyás B; Cowey A; Heywood CA; Popplewell D; Roland PE
    Hum Brain Mapp; 1998; 6(3):115-27. PubMed ID: 9673667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual memory, visual imagery, and visual recognition of large field patterns by the human brain: functional anatomy by positron emission tomography.
    Roland PE; Gulyás B
    Cereb Cortex; 1995; 5(1):79-93. PubMed ID: 7719132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human cortical regions activated by wide-field visual motion: an H2(15)O PET study.
    Cheng K; Fujita H; Kanno I; Miura S; Tanaka K
    J Neurophysiol; 1995 Jul; 74(1):413-27. PubMed ID: 7472342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attentional effects in the visual pathways: a whole-brain PET study.
    Bundesen C; Larsen A; Kyllingsbaek S; Paulson OB; Law I
    Exp Brain Res; 2002 Dec; 147(3):394-406. PubMed ID: 12428147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.
    Sweeney JA; Mintun MA; Kwee S; Wiseman MB; Brown DL; Rosenberg DR; Carl JR
    J Neurophysiol; 1996 Jan; 75(1):454-68. PubMed ID: 8822570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional magnetic resonance imaging of visual object construction and shape discrimination : relations among task, hemispheric lateralization, and gender.
    Georgopoulos AP; Whang K; Georgopoulos MA; Tagaris GA; Amirikian B; Richter W; Kim SG; Uğurbil K
    J Cogn Neurosci; 2001 Jan; 13(1):72-89. PubMed ID: 11224910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography.
    Winstein CJ; Grafton ST; Pohl PS
    J Neurophysiol; 1997 Mar; 77(3):1581-94. PubMed ID: 9084621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural networks for internal reading and visual imagery of reading: a PET study.
    Gulyás B
    Brain Res Bull; 2001 Feb; 54(3):319-28. PubMed ID: 11287137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A PET study of somatosensory discrimination in man. microgeometry versus macrogeometry.
    O'Sullivan BT; Roland PE; Kawashima R
    Eur J Neurosci; 1994 Jan; 6(1):137-48. PubMed ID: 8130929
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the left inferior temporal cortex for visual pattern discrimination--a PET study.
    Kawashima R; Satoh K; Goto R; Inoue K; Itoh M; Fukuda H
    Neuroreport; 1998 May; 9(7):1581-6. PubMed ID: 9631470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The physiology of coloured hearing. A PET activation study of colour-word synaesthesia.
    Paulesu E; Harrison J; Baron-Cohen S; Watson JD; Goldstein L; Heather J; Frackowiak RS; Frith CD
    Brain; 1995 Jun; 118 ( Pt 3)():661-76. PubMed ID: 7600084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human brain regions involved in direction discrimination.
    Cornette L; Dupont P; Rosier A; Sunaert S; Van Hecke P; Michiels J; Mortelmans L; Orban GA
    J Neurophysiol; 1998 May; 79(5):2749-65. PubMed ID: 9582242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping of cortical areas involved in color vision in non-human primates.
    Takechi H; Onoe H; Shizuno H; Yoshikawa E; Sadato N; Tsukada H; Watanabe Y
    Neurosci Lett; 1997 Jul; 230(1):17-20. PubMed ID: 9259453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural activity during attention shifts between object features.
    Nagahama Y; Sadato N; Yamauchi H; Katsumi Y; Hayashi T; Fukuyama H; Kimura J; Shibasaki H; Yonekura Y
    Neuroreport; 1998 Aug; 9(11):2633-8. PubMed ID: 9721946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.