These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 7704346)

  • 1. Source localization of averaged and single EEG spikes using the electric dipole model.
    Tseng SY; Chong FC; Chen RC; Kuo TS
    Med Eng Phys; 1995 Jan; 17(1):64-70. PubMed ID: 7704346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simulation study of the error in dipole source localization for EEG spikes with a realistic head model.
    Kobayashi K; Yoshinaga H; Oka M; Ohtsuka Y; Gotman J
    Clin Neurophysiol; 2003 Jun; 114(6):1069-78. PubMed ID: 12804675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dipole modeling of epileptic spikes can be accurate or misleading.
    Kobayashi K; Yoshinaga H; Ohtsuka Y; Gotman J
    Epilepsia; 2005 Mar; 46(3):397-408. PubMed ID: 15730537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics of dipoles in clustered individual spikes and averaged spikes.
    Chitoku S; Otsubo H; Ichimura T; Saigusa T; Ochi A; Shirasawa A; Kamijo K; Yamazaki T; Pang E; Rutka JT; Weiss SK; Snead OC
    Brain Dev; 2003 Jan; 25(1):14-21. PubMed ID: 12536028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in spike localization with EEG dipole modeling.
    Rose S; Ebersole JS
    Clin EEG Neurosci; 2009 Oct; 40(4):281-7. PubMed ID: 19780349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feature extraction and clustering of EEG epileptic spikes.
    Wahlberg P; Salomonsson G
    Comput Biomed Res; 1996 Oct; 29(5):382-94. PubMed ID: 8902366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EEG source localization of the epileptogenic focus in patients with refractory temporal lobe epilepsy, dipole modelling revisited.
    Verhellen E; Boon P
    Acta Neurol Belg; 2007 Sep; 107(3):71-7. PubMed ID: 18072334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of volume conductor and source models to localize epileptic foci.
    Fuchs M; Wagner M; Kastner J
    J Clin Neurophysiol; 2007 Apr; 24(2):101-19. PubMed ID: 17414966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initial estimation methods for dipole modeling in localization of epileptogenic focus.
    Chen JJ; Yeh JG; Tsai JJ
    Med Eng Phys; 1998 Jan; 20(1):11-20. PubMed ID: 9664281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localisation of epileptic foci with multichannel magnetoencephalography, MEG.
    Knutsson E; Gransberg L
    Acta Neurochir Suppl; 1995; 64():74-8. PubMed ID: 8748588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dipole localization for identification of neuronal generators in independent neighboring interictal EEG spike foci.
    Ochi A; Otsubo H; Chitoku S; Hunjan A; Sharma R; Rutka JT; Chuang SH; Kamijo K; Yamazaki T; Snead OC
    Epilepsia; 2001 Apr; 42(4):483-90. PubMed ID: 11440343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of spikes from background by independent component analysis with dipole modeling and comparison to intracranial recording.
    Kobayashi K; Merlet I; Gotman J
    Clin Neurophysiol; 2001 Mar; 112(3):405-13. PubMed ID: 11222961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal source analysis in scalp EEG vs. intracerebral EEG and SPECT: a case study in a 2-year-old child.
    Aarabi A; Grebe R; Berquin P; Bourel Ponchel E; Jalin C; Fohlen M; Bulteau C; Delalande O; Gondry C; Héberlé C; Moullart V; Wallois F
    Neurophysiol Clin; 2012 Jun; 42(4):207-24. PubMed ID: 22632869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MEG versus EEG: influence of background activity on interictal spike detection.
    Ramantani G; Boor R; Paetau R; Ille N; Feneberg R; Rupp A; Boppel T; Scherg M; Rating D; Bast T
    J Clin Neurophysiol; 2006 Dec; 23(6):498-508. PubMed ID: 17143138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of adaptive and non-adaptive EEG source localization algorithms using a realistic head model.
    Russell JP; Koles ZJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():972-5. PubMed ID: 17946872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of anisotropic conductivity on EEG source reconstruction: investigations in a rabbit model.
    Güllmar D; Haueisen J; Eiselt M; Giessler F; Flemming L; Anwander A; Knösche TR; Wolters CH; Dümpelmann M; Tuch DS; Reichenbach JR
    IEEE Trans Biomed Eng; 2006 Sep; 53(9):1841-50. PubMed ID: 16941840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement in the performance of automated spike detection using dipole source features for artefact rejection.
    Flanagan D; Agarwal R; Wang YH; Gotman J
    Clin Neurophysiol; 2003 Jan; 114(1):38-49. PubMed ID: 12495762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced conductivity dependence method for increase of dipole localization accuracy in the EEG inverse problem.
    Yitembe BR; Crevecoeur G; Van Keer R; Dupre L
    IEEE Trans Biomed Eng; 2011 May; 58(5):1430-40. PubMed ID: 21257364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical utility of current-generation dipole modelling of scalp EEG.
    Plummer C; Litewka L; Farish S; Harvey AS; Cook MJ
    Clin Neurophysiol; 2007 Nov; 118(11):2344-61. PubMed ID: 17889598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A standardized boundary element method volume conductor model.
    Fuchs M; Kastner J; Wagner M; Hawes S; Ebersole JS
    Clin Neurophysiol; 2002 May; 113(5):702-12. PubMed ID: 11976050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.