These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 7704419)
1. The chromosomes of Festuca pratensis Huds. (Poaceae): fluorochrome banding, heterochromatin and condensation. Raskina OM; Rodionov AV; Smirnov AF Chromosome Res; 1995 Jan; 3(1):66-8. PubMed ID: 7704419 [TBL] [Abstract][Full Text] [Related]
2. Repetitive DNA: A Versatile Tool for Karyotyping in Festuca pratensis Huds. Křivánková A; Kopecký D; Stočes Š; Doležel J; Hřibová E Cytogenet Genome Res; 2017; 151(2):96-105. PubMed ID: 28334706 [TBL] [Abstract][Full Text] [Related]
3. A linkage map of meadow fescue ( Festuca pratensis Huds.) and comparative mapping with other Poaceae species. Alm V; Fang C; Busso CS; Devos KM; Vollan K; Grieg Z; Rognli OA Theor Appl Genet; 2003 Dec; 108(1):25-40. PubMed ID: 12923626 [TBL] [Abstract][Full Text] [Related]
4. Chromosome banding in Amphibia. XXV. Karyotype evolution and heterochromatin characterization in Australian Mixophyes (Anura, Myobatrachidae). Schmid M; Haaf T; Steinlein C; Nanda I; Mahony M Cytogenet Genome Res; 2002; 97(3-4):239-53. PubMed ID: 12438719 [TBL] [Abstract][Full Text] [Related]
5. A combined banding method that allows the reliable identification of chromosomes as well as differentiation of AT- and GC-rich heterochromatin. Lemskaya NA; Kulemzina AI; Beklemisheva VR; Biltueva LS; Proskuryakova AA; Hallenbeck JM; Perelman PL; Graphodatsky AS Chromosome Res; 2018 Dec; 26(4):307-315. PubMed ID: 30443803 [TBL] [Abstract][Full Text] [Related]
6. A new approach to the auchenorrhyncha (Hemiptera, Insecta) cytogenetics: chromosomes of the meadow spittlebug Philaenus spumarius (L.) examined using various chromosome banding techniques. Kuznetsova VG; Maryańska-Nadachowska A; Nokkala S Folia Biol (Krakow); 2003; 51(1-2):33-40. PubMed ID: 14686645 [TBL] [Abstract][Full Text] [Related]
7. A GC-rich satellite DNA and karyology of the bivalve mollusk Donax trunculus: a dominance of GC-rich heterochromatin. Petrović V; Pérez-García C; Pasantes JJ; Satović E; Prats E; Plohl M Cytogenet Genome Res; 2009; 124(1):63-71. PubMed ID: 19372670 [TBL] [Abstract][Full Text] [Related]
8. Patterns of chromosome banding in four nabid species (Heteroptera, Cimicomorpha, Nabidae) with high chromosome number karyotypes. Grozeva S; Kuznetsova VG; Nokkala S Hereditas; 2004; 140(2):99-104. PubMed ID: 15061786 [TBL] [Abstract][Full Text] [Related]
10. [Cytogenetic features of Zingeria biebersteiniana (Claus) P. Smirn]. Kotseruba VV Tsitologiia; 2001; 43(2):178-81. PubMed ID: 11347474 [TBL] [Abstract][Full Text] [Related]
11. Composition of constitutive heterochromatin of Pseudonannolene strinatii Mauriès, 1974 (Diplopoda, Spirostreptida) analyzed by AT/CG specific fluorochromes. Campos KA; Fontanetti CS Genet Mol Res; 2005 Dec; 4(4):765-70. PubMed ID: 16475124 [TBL] [Abstract][Full Text] [Related]
12. Cytogenetic analysis of the neotropical spider Nephilengys cruentata (Araneomorphae, Tetragnathidae): standard staining nors, C-bands and base-specific fluorochromes. Araújo D; Cella MD; Brescovit DA Braz J Biol; 2005 May; 65(2):193-202. PubMed ID: 16097721 [TBL] [Abstract][Full Text] [Related]
13. Polymorphism of heterochromatic regions of flax chromosomes. Muravenko V; Samatadze TE; Popov KV; Amosova AV; Zelenin AV Membr Cell Biol; 2001; 14(6):743-8. PubMed ID: 11817570 [TBL] [Abstract][Full Text] [Related]
14. Evolutionary dynamics and chromosomal distribution of repetitive sequences on chromosomes of Aegilops speltoides revealed by genomic in situ hybridization. Belyayev A; Raskina O; Nevo E Heredity (Edinb); 2001 Jun; 86(Pt 6):738-42. PubMed ID: 11595054 [TBL] [Abstract][Full Text] [Related]
15. Chromosome identification and mapping in the grass Zingeria biebersteiniana (2n = 4) using fluorochromes. Bennett ST; Leitch IJ; Bennett MD Chromosome Res; 1995 Mar; 3(2):101-8. PubMed ID: 7538406 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the karyotype of the tench (Tinca tinca L.) and analysis of its chromosomal heterochromatic regions by C-banding, Ag-staining, and restriction endonuclease banding. Padilla JA; Fernández-García JL; Rabasco A; Martínez-Trancón M; Rodriguez de Ledesma I; Pérez-Regadera JJ Cytogenet Cell Genet; 1993; 62(4):220-3. PubMed ID: 8382594 [TBL] [Abstract][Full Text] [Related]
17. Identification of early and late replicating heterochromatic regions on platyfish (Xiphophorus maculatus) chromosomes. Ocalewicz K Folia Biol (Krakow); 2005; 53(3-4):149-53. PubMed ID: 19058536 [TBL] [Abstract][Full Text] [Related]
18. Cytological investigation of Haplopappus gracilis (Nutt.) Gray: 5-methylcytosine-rich regions, fluorochrome banding and chromatin sensitivity to DNase I digestion. Ruffini Castiglione M; Frediani M; Venora G; Cremonini R Protoplasma; 2008; 233(1-2):107-13. PubMed ID: 18615238 [TBL] [Abstract][Full Text] [Related]
19. Analysis of constitutive heterochromatin of Aotus (Cebidae, Primates) by restriction enzyme and fluorochrome bands. Pieczarka JC; Nagamachi CY; Muniz JA; Barros RM; Mattevi MS Chromosome Res; 1998 Feb; 6(2):77-83. PubMed ID: 9543010 [TBL] [Abstract][Full Text] [Related]
20. A new approach in recognition of heterochromatic regions of human chromosomes by means of restriction endonucleases. Babu A; Agarwal AK; Verma RS Am J Hum Genet; 1988 Jan; 42(1):60-5. PubMed ID: 2827464 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]