BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 770473)

  • 1. The dissociated tryptophanase subunit is inactive.
    Raibaud O; Goldberg ME
    J Biol Chem; 1976 May; 251(9):2820-4. PubMed ID: 770473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic studies on coenzyme binding and coenzyme dissociation in tryptophanase immobilized on sepharose.
    Ikeda S; Sumi Y; Fukui S
    Biochemistry; 1975 Apr; 14(7):1464-70. PubMed ID: 1092337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative studies on the properties of tryptophanase and tyrosine phenol-lyase immobilized directly on Sepharose or by use of Sepharose-bound pyridoxal 5'-phosphate.
    Fukui S; Ikeda S; Fujimura M; Yamada H; Kumagai H
    Eur J Biochem; 1975 Feb; 51(1):155-64. PubMed ID: 1091485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The reactivity of one essential cysteine as a conformational probe in Escherichia coli tryptophanase. Application to the study of the structural influence of subunit interactions.
    Raibaud O; Goldberg ME
    Eur J Biochem; 1977 Mar; 73(2):591-9. PubMed ID: 321224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional interdependence of the protomers of Escherichia coli K 12 tryptophanase during binding of pyridoxal 5'-phosphate.
    Raibaud O; Goldberg ME
    J Biol Chem; 1976 May; 251(9):2814-9. PubMed ID: 770472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic and equilibrium studies on the activation of Escherichia coli K12 tryptophanase by pyridoxal 5'-phosphate and monovalent cations.
    Högberg-Raibaud A; Raibaud O; Goldberg ME
    J Biol Chem; 1975 May; 250(9):3352-8. PubMed ID: 1091651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural role of pyridoxal 5'-phosphate, pyridoxal 5'-phosphate analogs, and other agents in the association of subunits of Bacillus alvei apotryptophanase.
    Isom HC; DeMoss RD
    Biochemistry; 1975 Sep; 14(19):4298-304. PubMed ID: 241381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyridoxal 5'-phosphate and analogs as probes of coenzyme-protein interaction in Baccillus alvei tryptophanase.
    Isom HC; DeMoss RD
    Biochemistry; 1975 Sep; 14(19):4291-7. PubMed ID: 241380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of tryptophanase with tetranitromethane.
    Nihira T; Toraya T; Fukui S
    Eur J Biochem; 1981 Oct; 119(2):273-7. PubMed ID: 7030734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-dependent structural rearrangement of apotryptophanase in potassium phosphate.
    Lachmann G; Schnackerz KD
    Biochim Biophys Acta; 1985 Oct; 831(3):275-80. PubMed ID: 3902088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A structural view of the dissociation of Escherichia coli tryptophanase.
    Green K; Qasim N; Gdaelvsky G; Kogan A; Goldgur Y; Parola AH; Lotan O; Almog O
    Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2364-71. PubMed ID: 26627645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional role of cysteinyl residues in tryptophanase.
    Nihira T; Yasuda T; Kakizono T; Taguchi H; Ichikawa M; Toraya T; Fukui S
    Eur J Biochem; 1985 May; 149(1):129-33. PubMed ID: 3888623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyridoxal phosphate binding to wild type, W330F, and C298S mutants of Escherichia coli apotryptophanase: unraveling the cold inactivation.
    Erez T; Phillips RS; Parola AH
    FEBS Lett; 1998 Aug; 433(3):279-82. PubMed ID: 9744811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Essential arginine residues in tryptophanase from Escherichia coli.
    Kazarinoff MN; Snell EE
    J Biol Chem; 1977 Nov; 252(21):7598-602. PubMed ID: 334762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of temperature and monovalent cations on activity and quaternary structure of tryptophanase.
    Honda T; Tokushige M
    J Biochem; 1986 Sep; 100(3):679-85. PubMed ID: 3536895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The folding characteristics of tryptophanase from Escherichia coli.
    Mizobata T; Kawata Y
    J Biochem; 1995 Feb; 117(2):384-91. PubMed ID: 7608129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cold inactivation and dissociation into dimers of Escherichia coli tryptophanase and its W330F mutant form.
    Erez T; Gdalevsky GYa ; Torchinsky YM; Phillips RS; Parola AH
    Biochim Biophys Acta; 1998 May; 1384(2):365-72. PubMed ID: 9659398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorus 31 nuclear magnetic resonance study of tryptophanase. Pyridoxal phosphate-binding site.
    Schnackerz KD; Snell EE
    J Biol Chem; 1983 Apr; 258(8):4839-41. PubMed ID: 6339506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic function of a tyrosyl residue in tryptophanase.
    Kakizono T; Nihira T; Taguchi H
    Biochem Biophys Res Commun; 1986 Jun; 137(3):964-9. PubMed ID: 3524569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ordered disruption of subunit interfaces during the stepwise reversible dissociation of Escherichia coli phosphofructokinase with KSCN.
    Deville-Bonne D; Le Bras G; Teschner W; Garel JR
    Biochemistry; 1989 Feb; 28(4):1917-22. PubMed ID: 2524212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.