These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 7705303)

  • 1. Aspects of the release of superoxide by leukocytes, and a means by which this is switched off.
    Karnovsky ML; Bishop A; Camerero VC; Paz MA; Colepicolo P; Ribeiro JM; Gallop PM
    Environ Health Perspect; 1994 Dec; 102 Suppl 10(Suppl 10):43-4. PubMed ID: 7705303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methoxatin (PQQ) in guinea-pig neutrophils.
    Bishop A; Paz MA; Gallop PM; Karnovsky ML
    Free Radic Biol Med; 1994 Oct; 17(4):311-20. PubMed ID: 8001835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of redox cycling of methoxatin (PQQ), and of superoxide release by phagocytic white cells.
    Bishop A; Paz MA; Gallop PM; Karnovsky ML
    Free Radic Biol Med; 1995 Mar; 18(3):617-20. PubMed ID: 9101256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of superoxide anion generation in phagocytic bactericidal activity. Studies with normal and chronic granulomatous disease leukocytes.
    Johnston RB; Keele BB; Misra HP; Lehmeyer JE; Webb LS; Baehner RL; RaJagopalan KV
    J Clin Invest; 1975 Jun; 55(6):1357-72. PubMed ID: 166094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of anaerobiosis and inhibitors on O2-production by human granulocytes.
    Curnutte JT; Babior BM
    Blood; 1975 Jun; 45(6):851-61. PubMed ID: 164965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superoxide production and oxygen consumption in endothelium-intact and -denuded artery stimulated by angiotensin II.
    Barron JT; Sasse MF
    Mol Cell Biochem; 2005 Dec; 280(1-2):235-9. PubMed ID: 16311928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. H2O2 release from human granulocytes during phagocytosis. Relationship to superoxide anion formation and cellular catabolism of H2O2: studies with normal and cytochalasin B-treated cells.
    Root RK; Metcalf JA
    J Clin Invest; 1977 Dec; 60(6):1266-79. PubMed ID: 199619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of fibronectin on actin organization and respiratory burst activity in neutrophils, monocytes, and macrophages.
    Yang KD; Augustine NH; Shaio MF; Bohnsack JF; Hill HR
    J Cell Physiol; 1994 Feb; 158(2):347-53. PubMed ID: 8106571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence that proteases are involved in superoxide production by human polymorphonuclear leukocytes and monocytes.
    Kitagawa S; Takaku F; Sakamoto S
    J Clin Invest; 1980 Jan; 65(1):74-81. PubMed ID: 6243143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyridine nucleotide-dependent superoxide production by a cell-free system from human granulocytes.
    Babior BM; Curnutte JT; Kipnes BS
    J Clin Invest; 1975 Oct; 56(4):1035-42. PubMed ID: 239968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intercellular adhesion molecule 1 and beta2 integrins in C1q-stimulated superoxide production by human neutrophils: an example of a general regulatory mechanism governing acute inflammation.
    Tyagi S; Nicholson-Weller A; Barbashov SF; Tas SW; Klickstein LB
    Arthritis Rheum; 2000 Oct; 43(10):2248-59. PubMed ID: 11037884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperoxia inhibits stimulated superoxide release by rat alveolar macrophages.
    Forman HJ; Williams JJ; Nelson J; Daniele RP; Fisher AB
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Sep; 53(3):685-9. PubMed ID: 6290436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epithelial macrophages secrete a deactivating factor for superoxide release.
    Camarero VC; Junqueira VB; Colepicolo P; Karnovsky ML; Mariano M
    J Cell Physiol; 1990 Dec; 145(3):481-7. PubMed ID: 2177060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Active oxygen generating system in immune cells].
    Kanegasaki S
    Rinsho Byori; 1992 Apr; 40(4):392-6. PubMed ID: 1317472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cholestatic agent, alpha-naphthylisothiocyanate, stimulates superoxide release by rat neutrophils in vitro.
    Roth RA; Hewett JA
    Lab Invest; 1990 Jun; 62(6):736-41. PubMed ID: 2162998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of free oxygen radicals from human polymorphonuclear granulocytes by cytokines from human mononuclear cells, treated with quartz dust DQ12 or coal mine dust TF-1--new aspects in pathogenesis of pneumoconiosis.
    Maly ER
    Zentralbl Bakteriol Mikrobiol Hyg B Umwelthyg Krankenhaushyg Arbeitshyg Prav Med; 1988 Dec; 187(2):142-65. PubMed ID: 2852423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstitution of membrane-integrated quinoprotein glucose dehydrogenase apoenzyme with PQQ and the holoenzyme's mechanism of action.
    Dewanti AR; Duine JA
    Biochemistry; 1998 May; 37(19):6810-8. PubMed ID: 9578566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. IL-4 inhibits superoxide production by human mononuclear phagocytes.
    Abramson SL; Gallin JI
    J Immunol; 1990 Jan; 144(2):625-30. PubMed ID: 2153171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative aspects of the production of superoxide radicals by phagocytizing human granulocytes.
    Weening RS; Wever R; Roos D
    J Lab Clin Med; 1975 Feb; 85(2):245-52. PubMed ID: 163283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The superoxide generating system of B cell lines. Structural homology with the phagocytic oxidase and triggering via surface Ig.
    Maly FE; Cross AR; Jones OT; Wolf-Vorbeck G; Walker C; Dahinden CA; De Weck AL
    J Immunol; 1988 Apr; 140(7):2334-9. PubMed ID: 2832475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.