These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 7705303)

  • 21. H2O2 release from human granulocytes during phagocytosis. I. Documentation, quantitation, and some regulating factors.
    Root RK; Metcalf J; Oshino N; Chance B
    J Clin Invest; 1975 May; 55(5):945-55. PubMed ID: 1123431
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Systemic hypoxia enhances exercise-mediated bactericidal and subsequent apoptotic responses in human neutrophils.
    Wang JS; Chiu YT
    J Appl Physiol (1985); 2009 Oct; 107(4):1213-22. PubMed ID: 19644031
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced superoxide generation and the decreased superoxide scavenging activity of peripheral blood leukocytes in Behçet's disease--effects of colchicine.
    Pronai L; Ichikawa Y; Nakazawa H; Arimori S
    Clin Exp Rheumatol; 1991; 9(3):227-33. PubMed ID: 1652388
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Superoxide-generating system in leukocytes: its activation mechanism and significance].
    Kanegasaki S
    Hum Cell; 1993 Dec; 6(4):245-52. PubMed ID: 8148304
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of reactive O2 in phagocyte-induced hypermetabolism and pulmonary injury.
    Vlessis AA; Bartos D; Muller P; Trunkey DD
    J Appl Physiol (1985); 1995 Jan; 78(1):112-6. PubMed ID: 7713799
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Does diphenylene iodonium chloride have any effect on the O2- -generating step of plant peroxidases?
    Barceló AR; Ferrer MA
    FEBS Lett; 1999 Dec; 462(3):254-6. PubMed ID: 10622706
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deactivation of the respiratory burst in activated macrophages: evidence for alteration of signal transduction.
    Kitagawa S; Johnston RB
    J Immunol; 1986 Apr; 136(7):2605-12. PubMed ID: 3005415
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activation of murine macrophage cell lines. Possible involvement of protein kinases in stimulation of superoxide production.
    Kiyotaki C; Bloom BR
    J Immunol; 1984 Aug; 133(2):923-31. PubMed ID: 6330204
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of calcium in the initiation of superoxide release from alveolar macrophages.
    Holian A; Daniele RP
    J Cell Physiol; 1982 Oct; 113(1):87-93. PubMed ID: 6290514
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relationship between membrane potential changes and superoxide-releasing capacity in resident and activated mouse peritoneal macrophages.
    Kitagawa S; Johnston RB
    J Immunol; 1985 Nov; 135(5):3417-23. PubMed ID: 2995493
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Respiratory burst in alveolar macrophages of diabetic rats.
    Mohsenin V; Latifpour J
    J Appl Physiol (1985); 1990 Jun; 68(6):2384-90. PubMed ID: 2166735
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Signal transduction mechanisms of C1q-mediated superoxide production. Evidence for the involvement of temporally distinct staurosporine-insensitive and sensitive pathways.
    Goodman EB; Tenner AJ
    J Immunol; 1992 Jun; 148(12):3920-8. PubMed ID: 1318335
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface contact inhibits neutrophil superoxide generation induced by soluble stimuli.
    Hoffstein ST; Gennaro DE; Manzi RM
    Lab Invest; 1985 May; 52(5):515-22. PubMed ID: 2985869
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The DAB-Mn++ cytochemical method revisited: validation of specificity for superoxide.
    Steinbeck MJ; Khan AU; Appel WH; Karnovsky MJ
    J Histochem Cytochem; 1993 Nov; 41(11):1659-67. PubMed ID: 8292156
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Homocysteine enhances superoxide anion release and NADPH oxidase assembly by human neutrophils. Effects on MAPK activation and neutrophil migration.
    Alvarez-Maqueda M; El Bekay R; Monteseirín J; Alba G; Chacón P; Vega A; Santa María C; Tejedo JR; Martín-Nieto J; Bedoya FJ; Pintado E; Sobrino F
    Atherosclerosis; 2004 Feb; 172(2):229-38. PubMed ID: 15019532
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Manganese-dependent NADPH oxidation by granulocyte particles. The role of superoxide and the nonphysiological nature of the manganese requirement.
    Curnutte JT; Karnovsky ML; Babior BM
    J Clin Invest; 1976 Apr; 57(4):1059-67. PubMed ID: 7574
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superoxide-dependent nitroblue tetrazolium reduction and expression of cytochrome b-245 components by human tonsillar B lymphocytes and B cell lines.
    Maly FE; Nakamura M; Gauchat JF; Urwyler A; Walker C; Dahinden CA; Cross AR; Jones OT; de Weck AL
    J Immunol; 1989 Feb; 142(4):1260-7. PubMed ID: 2536769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hyperoxia alters effect of calcium on rat alveolar macrophage superoxide production.
    Forman HJ; Nelson J; Harrison G
    J Appl Physiol (1985); 1986 Apr; 60(4):1300-5. PubMed ID: 3009390
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sources for superoxide release: lessons from blockade of electron transport, NADPH oxidase, and anion channels in diaphragm.
    Zuo L; Pasniciuc S; Wright VP; Merola AJ; Clanton TL
    Antioxid Redox Signal; 2003 Oct; 5(5):667-75. PubMed ID: 14580324
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemiluminescence and superoxide anion production by leukocytes from diabetic patients.
    Shah SV; Wallin JD; Eilen SD
    J Clin Endocrinol Metab; 1983 Aug; 57(2):402-9. PubMed ID: 6306042
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.