BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 7705356)

  • 1. Involvement of Tyr24 and Trp108 in substrate binding and substrate specificity of glycolate oxidase.
    Stenberg K; Clausen T; Lindqvist Y; Macheroux P
    Eur J Biochem; 1995 Mar; 228(2):408-16. PubMed ID: 7705356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of tyrosine 129 in the active site of spinach glycolate oxidase.
    Macheroux P; Kieweg V; Massey V; Söderlind E; Stenberg K; Lindqvist Y
    Eur J Biochem; 1993 May; 213(3):1047-54. PubMed ID: 8504801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and characterization of recombinant human liver glycolate oxidase.
    Vignaud C; Pietrancosta N; Williams EL; Rumsby G; Lederer F
    Arch Biochem Biophys; 2007 Sep; 465(2):410-6. PubMed ID: 17669354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The catalytic role of tyrosine 254 in flavocytochrome b2 (L-lactate dehydrogenase from baker's yeast). Comparison between the Y254F and Y254L mutant proteins.
    Gondry M; Dubois J; Terrier M; Lederer F
    Eur J Biochem; 2001 Sep; 268(18):4918-27. PubMed ID: 11559361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the catalytic role of the conserved active site residue His466 of choline oxidase.
    Ghanem M; Gadda G
    Biochemistry; 2005 Jan; 44(3):893-904. PubMed ID: 15654745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional structures of glycolate oxidase with bound active-site inhibitors.
    Stenberg K; Lindqvist Y
    Protein Sci; 1997 May; 6(5):1009-15. PubMed ID: 9144771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of spinach glycolate oxidase in Saccharomyces cerevisiae: purification and characterization.
    Macheroux P; Massey V; Thiele DJ; Volokita M
    Biochemistry; 1991 May; 30(18):4612-9. PubMed ID: 1850628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limited proteolysis and X-ray crystallography reveal the origin of substrate specificity and of the rate-limiting product release during oxidation of D-amino acids catalyzed by mammalian D-amino acid oxidase.
    Vanoni MA; Cosma A; Mazzeo D; Mattevi A; Todone F; Curti B
    Biochemistry; 1997 May; 36(19):5624-32. PubMed ID: 9153402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active site and loop 4 movements within human glycolate oxidase: implications for substrate specificity and drug design.
    Murray MS; Holmes RP; Lowther WT
    Biochemistry; 2008 Feb; 47(8):2439-49. PubMed ID: 18215067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxamates as substrates and inhibitors for FMN-dependent 2-hydroxy acid dehydrogenases.
    Amar D; North P; Miskiniene V; Cénas N; Lederer F
    Bioorg Chem; 2002 Jun; 30(3):145-62. PubMed ID: 12406701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleophilic addition reactions of free and enzyme-bound deazaflavin.
    Jorns MS; Hersh LB
    J Biol Chem; 1976 Aug; 251(16):4872-81. PubMed ID: 8450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Glu312 in binding and positioning of the substrate for the hydride transfer reaction in choline oxidase.
    Quaye O; Lountos GT; Fan F; Orville AM; Gadda G
    Biochemistry; 2008 Jan; 47(1):243-56. PubMed ID: 18072756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of a beta barrel loop 4 extension in modulating the physical and functional properties of long-chain 2-hydroxy-acid oxidase isozymes.
    Belmouden A; Lederer F
    Eur J Biochem; 1996 Jun; 238(3):790-8. PubMed ID: 8706682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of ionizable groups in catalysis of human liver glycolate oxidase.
    Pennati A; Gadda G
    J Biol Chem; 2009 Nov; 284(45):31214-22. PubMed ID: 19758989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spinach glycolate oxidase and yeast flavocytochrome b2 are structurally homologous and evolutionarily related enzymes with distinctly different function and flavin mononucleotide binding.
    Lindqvist Y; Brändén CI; Mathews FS; Lederer F
    J Biol Chem; 1991 Feb; 266(5):3198-207. PubMed ID: 1993693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel glycolate oxidase requiring flavin mononucleotide as the cofactor in the prasinophycean alga Mesostigma viride.
    Iwamoto K; Ikawa T
    Plant Cell Physiol; 2000 Aug; 41(8):988-91. PubMed ID: 11038060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-directed mutagenesis of histidine-90 in Escherichia coli L-threonine dehydrogenase alters its substrate specificity.
    Johnson AR; Dekker EE
    Arch Biochem Biophys; 1998 Mar; 351(1):8-16. PubMed ID: 9500838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of the supplemental methionine source L-2-hydroxy-4-methylthiobutanoic acid by pure L-2-hydroxy acid oxidase from chicken liver.
    Dupuis L; Brachet P; Puigserver A
    J Nutr; 1990 Oct; 120(10):1171-8. PubMed ID: 2213247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The formation of oxalate from glycolate in rat and human liver.
    Yanagawa M; Maeda-Nakai E; Yamakawa K; Yamamoto I; Kawamura J; Tada S; Ichiyama A
    Biochim Biophys Acta; 1990 Oct; 1036(1):24-33. PubMed ID: 2223823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crystal structure of L-lactate oxidase from Aerococcus viridans at 2.1A resolution reveals the mechanism of strict substrate recognition.
    Umena Y; Yorita K; Matsuoka T; Kita A; Fukui K; Morimoto Y
    Biochem Biophys Res Commun; 2006 Nov; 350(2):249-56. PubMed ID: 17007814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.