BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 7705356)

  • 21. Active site plasticity in D-amino acid oxidase: a crystallographic analysis.
    Todone F; Vanoni MA; Mozzarelli A; Bolognesi M; Coda A; Curti B; Mattevi A
    Biochemistry; 1997 May; 36(19):5853-60. PubMed ID: 9153426
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of glycine 81 in (S)-mandelate dehydrogenase from Pseudomonas putida in substrate specificity and oxidase activity.
    Dewanti AR; Xu Y; Mitra B
    Biochemistry; 2004 Aug; 43(33):10692-700. PubMed ID: 15311930
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High resolution structures of an oxidized and reduced flavoprotein. The water switch in a soluble form of (S)-mandelate dehydrogenase.
    Sukumar N; Dewanti AR; Mitra B; Mathews FS
    J Biol Chem; 2004 Jan; 279(5):3749-57. PubMed ID: 14604988
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystal structure analysis of recombinant rat kidney long chain hydroxy acid oxidase.
    Cunane LM; Barton JD; Chen ZW; Lê KH; Amar D; Lederer F; Mathews FS
    Biochemistry; 2005 Feb; 44(5):1521-31. PubMed ID: 15683236
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Porcine recombinant dihydropyrimidine dehydrogenase: comparison of the spectroscopic and catalytic properties of the wild-type and C671A mutant enzymes.
    Rosenbaum K; Jahnke K; Curti B; Hagen WR; Schnackerz KD; Vanoni MA
    Biochemistry; 1998 Dec; 37(50):17598-609. PubMed ID: 9860876
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aromatic stacking interactions govern catalysis in aryl-alcohol oxidase.
    Ferreira P; Hernández-Ortega A; Lucas F; Carro J; Herguedas B; Borrelli KW; Guallar V; Martínez AT; Medina M
    FEBS J; 2015 Aug; 282(16):3091-106. PubMed ID: 25639975
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Laboratory-evolved vanillyl-alcohol oxidase produces natural vanillin.
    van den Heuvel RH; van den Berg WA; Rovida S; van Berkel WJ
    J Biol Chem; 2004 Aug; 279(32):33492-500. PubMed ID: 15169773
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A spectrophotometric method for the determination of glycolate in urine and plasma with glycolate oxidase.
    Maeda-Nakai E; Ichiyama A
    J Biochem; 2000 Feb; 127(2):279-87. PubMed ID: 10731695
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GLYCOLIC ACID OXIDATION BY ESCHERICHIA COLI ADAPTED TO GLYCOLATE.
    FURUYA A; HAYASHI JA
    J Bacteriol; 1963 May; 85(5):1124-31. PubMed ID: 14044004
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Altered substrate specificity in flavocytochrome b2: structural insights into the mechanism of L-lactate dehydrogenation.
    Mowat CG; Wehenkel A; Green AJ; Walkinshaw MD; Reid GA; Chapman SK
    Biochemistry; 2004 Jul; 43(29):9519-26. PubMed ID: 15260495
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxidation-reduction properties of glycolate oxidase.
    Pace C; Stankovich M
    Biochemistry; 1986 May; 25(9):2516-22. PubMed ID: 3521736
    [TBL] [Abstract][Full Text] [Related]  

  • 32. (S)-Mandelate dehydrogenase from Pseudomonas putida: mutations of the catalytic base histidine-274 and chemical rescue of activity.
    Lehoux IE; Mitra B
    Biochemistry; 1999 Aug; 38(31):9948-55. PubMed ID: 10433701
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of sodium glycolate and sodium pyruvate on oxalic acid biosynthesizing enzymes in rat liver and kidney.
    Murthy MS; Talwar HS; Thind SK; Nath R
    Ann Nutr Metab; 1983; 27(4):355-60. PubMed ID: 6349516
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The pathways of oxalate formation from phenylalanine, tyrosine, tryptophan and ascorbic acid in the rat.
    Gambardella RL; Richardson KE
    Biochim Biophys Acta; 1977 Aug; 499(1):156-68. PubMed ID: 889894
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structures of the G81A mutant form of the active chimera of (S)-mandelate dehydrogenase and its complex with two of its substrates.
    Sukumar N; Dewanti A; Merli A; Rossi GL; Mitra B; Mathews FS
    Acta Crystallogr D Biol Crystallogr; 2009 Jun; 65(Pt 6):543-52. PubMed ID: 19465768
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MD and QM/MM studies on long-chain L-α-hydroxy acid oxidase: substrate binding features and oxidation mechanism.
    Cao Y; Han S; Yu L; Qian H; Chen JZ
    J Phys Chem B; 2014 May; 118(20):5406-17. PubMed ID: 24801764
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plant and animal glycolate oxidases have a common eukaryotic ancestor and convergently duplicated to evolve long-chain 2-hydroxy acid oxidases.
    Esser C; Kuhn A; Groth G; Lercher MJ; Maurino VG
    Mol Biol Evol; 2014 May; 31(5):1089-101. PubMed ID: 24408912
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the role of histidine 351 in the reaction of alcohol oxidation catalyzed by choline oxidase.
    Rungsrisuriyachai K; Gadda G
    Biochemistry; 2008 Jul; 47(26):6762-9. PubMed ID: 18540638
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the contribution of the positively charged headgroup of choline to substrate binding and catalysis in the reaction catalyzed by choline oxidase.
    Gadda G; Fan F; Hoang JV
    Arch Biochem Biophys; 2006 Jul; 451(2):182-7. PubMed ID: 16713988
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changing the substrate specificity of a chitooligosaccharide oxidase from Fusarium graminearum by model-inspired site-directed mutagenesis.
    Heuts DP; Janssen DB; Fraaije MW
    FEBS Lett; 2007 Oct; 581(25):4905-9. PubMed ID: 17900572
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.