These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 7705623)

  • 1. A molecular investigation of genotype by environment interactions.
    Dean AM
    Genetics; 1995 Jan; 139(1):19-33. PubMed ID: 7705623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection and neutrality in lactose operons of Escherichia coli.
    Dean AM
    Genetics; 1989 Nov; 123(3):441-54. PubMed ID: 2513251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic flux and fitness.
    Dykhuizen DE; Dean AM; Hartl DL
    Genetics; 1987 Jan; 115(1):25-31. PubMed ID: 3104135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effector Overlap between the
    Narang A; Oehler S
    J Bacteriol; 2017 May; 199(9):. PubMed ID: 28193904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of beta-galactosidase III: implications for entry of galactosides into Klebsiella.
    Hall BG
    J Bacteriol; 1980 May; 142(2):433-8. PubMed ID: 6769899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. THE INCREASED POTENTIAL FOR SELECTION OF THE LAC OPERON OF ESCHERICHIA COLI.
    Silva PJN; Dykhuizen DE
    Evolution; 1993 Jun; 47(3):741-749. PubMed ID: 28567900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on beta-galactoside transport in a Proteus mirabilis merodiploid carrying an Escherichia coli lactose operon.
    Stubbs J; Horwitz A; Moses V
    J Bacteriol; 1973 Oct; 116(1):131-40. PubMed ID: 4583204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lactose inhibits the growth of Rhizobium meliloti cells that contain an actively expressed Escherichia coli lactose operon.
    Timblin CR; Kahn ML
    J Bacteriol; 1984 Jun; 158(3):1204-7. PubMed ID: 6427192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mutant Ebg enzyme that converts lactose into an inducer of the lac operon.
    Rolseth SJ; Fried VA; Hall BG
    J Bacteriol; 1980 Jun; 142(3):1036-9. PubMed ID: 6769907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The anomeric specificity of beta-galactosidase and lac permease from Escherichia coli.
    Huber RE; Hurlburt KL; Turner CL
    Can J Biochem; 1981 Feb; 59(2):100-5. PubMed ID: 6786712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative binding of the sugar substrates and allosteric regulatory protein (enzyme IIIGlc of the phosphotransferase system) to the lactose and melibiose permeases in Escherichia coli and Salmonella typhimurium.
    Saier MH; Novotny MJ; Comeau-Fuhrman D; Osumi T; Desai JD
    J Bacteriol; 1983 Sep; 155(3):1351-7. PubMed ID: 6350268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of beta-galactosidase--lactose-permease chimaeras of Escherichia coli.
    Griesser HW; Müller-Hill B; Overath P
    Eur J Biochem; 1983 Dec; 137(3):567-72. PubMed ID: 6363063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increase in the catalytic rate of beta-galactosidase by selection in chemostats at changing dilution rates.
    Tsen SD
    Biochem Biophys Res Commun; 1990 Feb; 166(3):1245-50. PubMed ID: 2106313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fitness effects of amino acid replacements in the beta-galactosidase of Escherichia coli.
    Dean AM; Dykhuizen DE; Hartl DL
    Mol Biol Evol; 1988 Sep; 5(5):469-85. PubMed ID: 3143044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cost-benefit tradeoffs in engineered lac operons.
    Eames M; Kortemme T
    Science; 2012 May; 336(6083):911-5. PubMed ID: 22605776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The catalytic consequences of experimental evolution. Transition-state structure during catalysis by the evolved beta-galactosidases of Escherichia coli (ebg enzymes) changed by a single mutational event.
    Li BF; Holdup D; Morton CA; Sinnott ML
    Biochem J; 1989 May; 260(1):109-14. PubMed ID: 2505746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-reactivity relationships for beta-galactosidase (Escherichia coli, lac Z). 4. Mechanism for reaction of nucleophiles with the galactosyl-enzyme intermediates of E461G and E461Q beta-galactosidases.
    Richard JP; Huber RE; Heo C; Amyes TL; Lin S
    Biochemistry; 1996 Sep; 35(38):12387-401. PubMed ID: 8823174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of newly evolved enzymes. IV. Directed evolution of the Ebg repressor.
    Hall BG
    Genetics; 1978 Dec; 90(4):673-81. PubMed ID: 105963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The catalytic consequences of experimental evolution. Studies on the subunit structure of the second (ebg) beta-galactosidase of Escherichia coli, and on catalysis by ebgab, an experimental evolvant containing two amino acid substitutions.
    Elliott AC; K S; Sinnott ML; Smith PJ; Bommuswamy J; Guo Z; Hall BG; Zhang Y
    Biochem J; 1992 Feb; 282 ( Pt 1)(Pt 1):155-64. PubMed ID: 1540130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of an artificial bifunctional enzyme, beta-galactosidase/galactose dehydrogenase, exhibiting efficient galactose channeling.
    Ljungcrantz P; Carlsson H; Månsson MO; Buckel P; Mosbach K; Bülow L
    Biochemistry; 1989 Oct; 28(22):8786-92. PubMed ID: 2513881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.