BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 7705626)

  • 1. Mutations that alter the timing and pattern of cubitus interruptus gene expression in Drosophila melanogaster.
    Slusarski DC; Motzny CK; Holmgren R
    Genetics; 1995 Jan; 139(1):229-40. PubMed ID: 7705626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of cubitus interruptus regulation in Drosophila embryos and imaginal disks.
    Schwartz C; Locke J; Nishida C; Kornberg TB
    Development; 1995 Jun; 121(6):1625-35. PubMed ID: 7600980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The combgap locus encodes a zinc-finger protein that regulates cubitus interruptus during limb development in Drosophila melanogaster.
    Svendsen PC; Marshall SD; Kyba M; Brook WJ
    Development; 2000 Oct; 127(19):4083-93. PubMed ID: 10976041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engrailed gene dosage determines whether certain recessive cubitus interruptus alleles exhibit dominance of the adult wing phenotype in Drosophila.
    Locke J; Hanna S
    Dev Genet; 1996; 19(4):340-9. PubMed ID: 9023986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drosophila ciD encodes a hybrid Pangolin/Cubitus interruptus protein that diverts the Wingless into the Hedgehog signaling pathway.
    Schweizer L; Basler K
    Mech Dev; 1998 Nov; 78(1-2):141-51. PubMed ID: 9858713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of Hedgehog target gene expression by the Fused serine-threonine kinase in wing imaginal discs.
    Alves G; Limbourg-Bouchon B; Tricoire H; Brissard-Zahraoui J; Lamour-Isnard C; Busson D
    Mech Dev; 1998 Nov; 78(1-2):17-31. PubMed ID: 9858670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cubitus interruptus acts to specify naked cuticle in the trunk of Drosophila embryos.
    Angelats C; Gallet A; Thérond P; Fasano L; Kerridge S
    Dev Biol; 2002 Jan; 241(1):132-44. PubMed ID: 11784100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell patterning in the Drosophila segment: engrailed and wingless antigen distributions in segment polarity mutant embryos.
    van den Heuvel M; Klingensmith J; Perrimon N; Nusse R
    Dev Suppl; 1993; ():105-14. PubMed ID: 8049466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishing parasegments in Drosophila embryos: roles of the odd-skipped and naked genes.
    Mullen JR; DiNardo S
    Dev Biol; 1995 May; 169(1):295-308. PubMed ID: 7750646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. araucan and caupolican provide a link between compartment subdivisions and patterning of sensory organs and veins in the Drosophila wing.
    Gómez-Skarmeta JL; Modolell J
    Genes Dev; 1996 Nov; 10(22):2935-45. PubMed ID: 8918894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localized expression of sloppy paired protein maintains the polarity of Drosophila parasegments.
    Cadigan KM; Grossniklaus U; Gehring WJ
    Genes Dev; 1994 Apr; 8(8):899-913. PubMed ID: 7926775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drawing a stripe in Drosophila imaginal disks: negative regulation of decapentaplegic and patched expression by engrailed.
    Sanicola M; Sekelsky J; Elson S; Gelbart WM
    Genetics; 1995 Feb; 139(2):745-56. PubMed ID: 7713429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional activation of hedgehog target genes in Drosophila is mediated directly by the cubitus interruptus protein, a member of the GLI family of zinc finger DNA-binding proteins.
    Alexandre C; Jacinto A; Ingham PW
    Genes Dev; 1996 Aug; 10(16):2003-13. PubMed ID: 8769644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential requirements of the fused kinase for hedgehog signalling in the Drosophila embryo.
    Thérond PP; Limbourg Bouchon B; Gallet A; Dussilol F; Pietri T; van den Heuvel M; Tricoire H
    Development; 1999 Sep; 126(18):4039-51. PubMed ID: 10457013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An absolute requirement for Cubitus interruptus in Hedgehog signaling.
    Méthot N; Basler K
    Development; 2001 Mar; 128(5):733-42. PubMed ID: 11171398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional conservation of the wingless-engrailed interaction as shown by a widely applicable baculovirus misexpression system.
    Oppenheimer DI; MacNicol AM; Patel NH
    Curr Biol; 1999 Nov; 9(22):1288-96. PubMed ID: 10574758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. decapentaplegic overexpression affects Drosophila wing and leg imaginal disc development and wingless expression.
    Morimura S; Maves L; Chen Y; Hoffmann FM
    Dev Biol; 1996 Jul; 177(1):136-51. PubMed ID: 8660883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. patched overexpression alters wing disc size and pattern: transcriptional and post-transcriptional effects on hedgehog targets.
    Johnson RL; Grenier JK; Scott MP
    Development; 1995 Dec; 121(12):4161-70. PubMed ID: 8575316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The roles of the homeobox genes aristaless and Distal-less in patterning the legs and wings of Drosophila.
    Campbell G; Tomlinson A
    Development; 1998 Nov; 125(22):4483-93. PubMed ID: 9778507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct and regulated activities of human Gli proteins in Drosophila.
    von Mering C; Basler K
    Curr Biol; 1999 Nov; 9(22):1319-22. PubMed ID: 10574767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.