These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 7705978)

  • 1. Potential-energy calculations of terminally blocked tetrapeptides from the third loop of short-chain snake venom neurotoxins.
    Roos HM; van Rooyen PH
    Int J Pept Protein Res; 1994 Dec; 44(6):562-7. PubMed ID: 7705978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental studies and potential energy calculations of the blocked tetrapeptide Ac-Lys-Pro-Gly-Ile-NMA from the third loop of short-chain snake venom neurotoxins.
    Roos HM; Van Rooyen PH; Wessels PL
    Int J Pept Protein Res; 1993 Oct; 42(4):305-11. PubMed ID: 8244625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental studies and potential-energy calculations of the blocked tetrapeptide Ac-Lys-Gln-Gly-Ile-NMA from the third loop of a short-chain snake venom neurotoxin.
    Roos HM; Van Rooyen PH; Wessels PL
    Int J Pept Protein Res; 1994 Apr; 43(4):337-43. PubMed ID: 8045679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the third loop of short-chain snake venom neurotoxins: roles of the short-range and long-range interactions.
    Liu Z; Li W; Zhang H; Han Y; Lai L
    Proteins; 2001 Jan; 42(1):6-16. PubMed ID: 11093256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Snake venom alpha-neurotoxins and other 'three-finger' proteins.
    Tsetlin V
    Eur J Biochem; 1999 Sep; 264(2):281-6. PubMed ID: 10491072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The in vitro production of three-finger neurotoxins from snake venoms with a high abundance of disulfide bonds. Problems and their solutions].
    Liukmanova EN; Shulepko MA; Shenkarev ZO; Dolgikh DA; Kirpichnikov MP
    Bioorg Khim; 2010; 36(2):149-58. PubMed ID: 20531472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional solution structure of the extracellular region of the complement regulatory protein CD59, a new cell-surface protein domain related to snake venom neurotoxins.
    Kieffer B; Driscoll PC; Campbell ID; Willis AC; van der Merwe PA; Davis SJ
    Biochemistry; 1994 Apr; 33(15):4471-82. PubMed ID: 7512825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational comparison in the snake toxin family.
    Falkenstein RJ; Peña C; Biscoglio MJ; Bonino DJ
    Int J Pept Protein Res; 1996 Mar; 47(3):167-76. PubMed ID: 8740966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Distinct Functional Site in Ω-Neurotoxins: Novel Antagonists of Nicotinic Acetylcholine Receptors from Snake Venom.
    Hassan-Puttaswamy V; Adams DJ; Kini RM
    ACS Chem Biol; 2015 Dec; 10(12):2805-15. PubMed ID: 26448325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overview of snake venom chemistry.
    Tu AT
    Adv Exp Med Biol; 1996; 391():37-62. PubMed ID: 8726048
    [No Abstract]   [Full Text] [Related]  

  • 11. Alpha neurotoxins.
    Barber CM; Isbister GK; Hodgson WC
    Toxicon; 2013 May; 66():47-58. PubMed ID: 23416229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xenoxins, a family of peptides from dorsal gland secretion of Xenopus laevis related to snake venom cytotoxins and neurotoxins.
    Kolbe HV; Huber A; Cordier P; Rasmussen UB; Bouchon B; Jaquinod M; Vlasak R; Délot EC; Kreil G
    J Biol Chem; 1993 Aug; 268(22):16458-64. PubMed ID: 8393864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the binding mechanism of Alzheimer's Aβ1-42 to nicotinic acetylcholine receptors based on similarity with snake α-neurotoxins.
    Maatuk N; Samson AO
    Neurotoxicology; 2013 Jan; 34():236-42. PubMed ID: 23022323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The integrin alpha IIb beta 3 contains distinct and interacting binding sites for snake-venom RGD (Arg-Gly-Asp) proteins. Evidence that the receptor-binding characteristics of snake-venom RGD proteins are related to the amino acid environment flanking the sequence RGD.
    Rahman S; Lu X; Kakkar VV; Authi KS
    Biochem J; 1995 Nov; 312 ( Pt 1)(Pt 1):223-32. PubMed ID: 7492316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicted secondary structure of snake venom toxins from their primary structures.
    Eterović VA; Ferchmin PA
    Int J Pept Protein Res; 1977; 10(3):245-51. PubMed ID: 914428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of a taxon-specific three-finger toxin from the venom of the Green Vinesnake (Oxybelis fulgidus; family Colubridae).
    Heyborne WH; Mackessy SP
    Biochimie; 2013 Oct; 95(10):1923-32. PubMed ID: 23851011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of alpha-dendrotoxin from the green mamba venom and its comparison with the structure of bovine pancreatic trypsin inhibitor.
    Skarzyński T
    J Mol Biol; 1992 Apr; 224(3):671-83. PubMed ID: 1373774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of three classes of snake neurotoxins by homology modeling and computer simulation graphics.
    Juan HF; Hung CC; Wang KT; Chiou SH
    Biochem Biophys Res Commun; 1999 Apr; 257(2):500-10. PubMed ID: 10198241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural model of the anti-snake-toxin antibody, M alpha 2,3.
    Tenette C; Ducancel F; Smith JC
    Proteins; 1996 Sep; 26(1):9-31. PubMed ID: 8880926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical interactions at the dimer interface of kappa-bungarotoxin, a neuronal nicotinic acetylcholine receptor antagonist.
    Grant GA; Al-Rabiee R; Xu XL; Zhang Y
    Biochemistry; 1997 Mar; 36(11):3353-8. PubMed ID: 9116014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.