BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 7706270)

  • 1. Physicochemical studies of the d(G3T4G3)*d(G3A4G3).d(C3T4C3) triple helix.
    Scaria PV; Will S; Levenson C; Shafer RH
    J Biol Chem; 1995 Mar; 270(13):7295-303. PubMed ID: 7706270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triple helix formation and homologous strand exchange in pyrene-labeled oligonucleotides.
    Mohammadi S; Slama-Schwok A; Léger G; el Manouni D; Shchyolkina A; Leroux Y; Taillandier E
    Biochemistry; 1997 Dec; 36(48):14836-44. PubMed ID: 9398205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calorimetric analysis of triple helices targeted to the d(G3A4G3).d(C3T4C3) duplex.
    Scaria PV; Shafer RH
    Biochemistry; 1996 Aug; 35(33):10985-94. PubMed ID: 8718892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of triple helix formation: spectrophotometric studies on the d(A)10.2d(T)10 and d(C+3T4C+3).d(G3A4G3).d(C3T4C3) triple helices.
    Pilch DS; Brousseau R; Shafer RH
    Nucleic Acids Res; 1990 Oct; 18(19):5743-50. PubMed ID: 2216768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure, stability, and thermodynamics of a short intermolecular purine-purine-pyrimidine triple helix.
    Pilch DS; Levenson C; Shafer RH
    Biochemistry; 1991 Jun; 30(25):6081-8. PubMed ID: 2059618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on formation and stability of the d[G(AG)5]* d[G(AG)5]. d[C(TC)5] and d[G(TG)5]* d[G(AG)5]. d[C(TC)5] triple helices.
    He Y; Scaria PV; Shafer RH
    Biopolymers; 1997 Apr; 41(4):431-41. PubMed ID: 9080778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circular dichroism and UV melting studies on formation of an intramolecular triplex containing parallel T*A:T and G*G:C triplets: netropsin complexation with the triplex.
    Gondeau C; Maurizot JC; Durand M
    Nucleic Acids Res; 1998 Nov; 26(21):4996-5003. PubMed ID: 9776765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antitumor polycyclic acridines. Part 16. Triplex DNA as a target for DNA-binding polycyclic acridine derivatives.
    Missailidis S; Modi C; Trapani V; Laughton CA; Stevens MF
    Oncol Res; 2005; 15(2):95-105. PubMed ID: 16119007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex.
    Walter A; Schütz H; Simon H; Birch-Hirschfeld E
    J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic, kinetic, and conformational properties of a parallel intermolecular DNA triplex containing 5' and 3' junctions.
    Asensio JL; Dosanjh HS; Jenkins TC; Lane AN
    Biochemistry; 1998 Oct; 37(43):15188-98. PubMed ID: 9790683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic characterization of the stability and the melting behavior of a DNA triplex: a spectroscopic and calorimetric study.
    Plum GE; Park YW; Singleton SF; Dervan PB; Breslauer KJ
    Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9436-40. PubMed ID: 2251285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetics of strand-displacement reactions in triple helices: a spectroscopic study.
    Mills M; Arimondo PB; Lacroix L; Garestier T; Hélène C; Klump H; Mergny JL
    J Mol Biol; 1999 Sep; 291(5):1035-54. PubMed ID: 10518941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presence of divalent cation is not mandatory for the formation of intramolecular purine-motif triplex containing human c-jun protooncogene target.
    Kaushik S; Kaushik M; Svinarchuk F; Malvy C; Fermandjian S; Kukreti S
    Biochemistry; 2011 May; 50(19):4132-42. PubMed ID: 21381700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The high stability of the triple helices formed between short purine oligonucleotides and SIV/HIV-2 vpx genes is determined by the targeted DNA structure.
    Svinarchuk F; Monnot M; Merle A; Malvy C; Fermandjian S
    Nucleic Acids Res; 1995 Oct; 23(19):3831-6. PubMed ID: 7479024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH and cation effects on the properties of parallel pyrimidine motif DNA triplexes.
    Sugimoto N; Wu P; Hara H; Kawamoto Y
    Biochemistry; 2001 Aug; 40(31):9396-405. PubMed ID: 11478909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural analysis of the (dA)10.2(dT)10 triple helix.
    Pilch DS; Levenson C; Shafer RH
    Proc Natl Acad Sci U S A; 1990 Mar; 87(5):1942-6. PubMed ID: 2308955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic properties of a conformationally constrained intramolecular DNA triple helix.
    Völker J; Osborne SE; Glick GD; Breslauer KJ
    Biochemistry; 1997 Jan; 36(4):756-67. PubMed ID: 9020773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calorimetric unfolding of intramolecular triplexes: length dependence and incorporation of single AT --> TA substitutions in the duplex domain.
    Shikiya R; Marky LA
    J Phys Chem B; 2005 Sep; 109(38):18177-83. PubMed ID: 16853334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triple helix formation by oligopurine-oligopyrimidine DNA fragments. Electrophoretic and thermodynamic behavior.
    Manzini G; Xodo LE; Gasparotto D; Quadrifoglio F; van der Marel GA; van Boom JH
    J Mol Biol; 1990 Jun; 213(4):833-43. PubMed ID: 2359124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triple-helix formation by an oligonucleotide containing one (dA)12 and two (dT)12 sequences bridged by two hexaethylene glycol chains.
    Durand M; Peloille S; Thuong NT; Maurizot JC
    Biochemistry; 1992 Sep; 31(38):9197-204. PubMed ID: 1390706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.