BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 7706401)

  • 21. The dissociation of nuclear and centrosomal division in gnu, a mutation causing giant nuclei in Drosophila.
    Freeman M; Nüsslein-Volhard C; Glover DM
    Cell; 1986 Aug; 46(3):457-68. PubMed ID: 3089628
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Drop out: a third chromosome maternal-effect locus required for formation of the Drosophila cellular blastoderm.
    Galewsky S; Schulz RA
    Mol Reprod Dev; 1992 Aug; 32(4):331-8. PubMed ID: 1497881
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aster migration determines the length scale of nuclear separation in the Drosophila syncytial embryo.
    Telley IA; Gáspár I; Ephrussi A; Surrey T
    J Cell Biol; 2012 Jun; 197(7):887-95. PubMed ID: 22711698
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reversible chromosome condensation induced in Drosophila embryos by anoxia: visualization of interphase nuclear organization.
    Foe VE; Alberts BM
    J Cell Biol; 1985 May; 100(5):1623-36. PubMed ID: 3921555
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temporal and spatial pattern of differences in microtubule behaviour during Drosophila embryogenesis revealed by distribution of a tubulin isoform.
    Wolf N; Regan CL; Fuller MT
    Development; 1988 Feb; 102(2):311-24. PubMed ID: 3138100
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis.
    Foe VE; Alberts BM
    J Cell Sci; 1983 May; 61():31-70. PubMed ID: 6411748
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The secretory membrane system in the Drosophila syncytial blastoderm embryo exists as functionally compartmentalized units around individual nuclei.
    Frescas D; Mavrakis M; Lorenz H; Delotto R; Lippincott-Schwartz J
    J Cell Biol; 2006 Apr; 173(2):219-30. PubMed ID: 16636144
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mutations of the Drosophila zinc finger-encoding gene vielfältig impair mitotic cell divisions and cause improper chromosome segregation.
    Staudt N; Fellert S; Chung HR; Jäckle H; Vorbrüggen G
    Mol Biol Cell; 2006 May; 17(5):2356-65. PubMed ID: 16525017
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Maternal expression of the checkpoint protein BubR1 is required for synchrony of syncytial nuclear divisions and polar body arrest in Drosophila melanogaster.
    Pérez-Mongiovi D; Malmanche N; Bousbaa H; Sunkel C
    Development; 2005 Oct; 132(20):4509-20. PubMed ID: 16162651
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional interactions between GTP cyclohydrolase I and tyrosine hydroxylase in Drosophila.
    Krishnakumar S; Burton D; Rasco J; Chen X; O'Donnell J
    J Neurogenet; 2000 Apr; 14(1):1-23. PubMed ID: 10938545
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Uptake and incorporation in pteridines of externally supplied GTP in normal and pigment-deficient eyes of Drosophila melanogaster.
    Montell I; Rasmuson A; Rasmuson B; Holmgren P
    Biochem Genet; 1992 Feb; 30(1-2):61-75. PubMed ID: 1325775
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation and characterization of a Drosophila gene essential for early embryonic development and formation of cortical cleavage furrows.
    Zhang CX; Lee MP; Chen AD; Brown SD; Hsieh T
    J Cell Biol; 1996 Aug; 134(4):923-34. PubMed ID: 8769417
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mars, a Drosophila protein related to vertebrate HURP, is required for the attachment of centrosomes to the mitotic spindle during syncytial nuclear divisions.
    Zhang G; Breuer M; Förster A; Egger-Adam D; Wodarz A
    J Cell Sci; 2009 Feb; 122(Pt 4):535-45. PubMed ID: 19174464
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coordination of Embryogenesis by the Centrosome in Drosophila melanogaster.
    Blake-Hedges C; Megraw TL
    Results Probl Cell Differ; 2019; 67():277-321. PubMed ID: 31435800
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Localized defects of blastoderm formation in maternal effect mutants of Drosophila.
    Rice TB; Garen A
    Dev Biol; 1975 Apr; 43(2):277-86. PubMed ID: 805069
    [No Abstract]   [Full Text] [Related]  

  • 36. Experimental phenocopy of a minute maternal-effect mutation alters blastoderm determination in embryos of Drosophila melanogaster.
    Boring LF; Sinervo B; Schubiger G
    Dev Biol; 1989 Apr; 132(2):343-54. PubMed ID: 2494087
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of pteridine biosynthesis eliminates blue-light dependent stimulation of red-light saturated photosynthesis in Laminaria saccharina (L.) Lamouroux.
    Maier J; Schmid R
    J Photochem Photobiol B; 1997 Apr; 38(2-3):274-8. PubMed ID: 9203391
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Female sterile mutations on the second chromosome of Drosophila melanogaster. I. Maternal effect mutations.
    Schüpbach T; Wieschaus E
    Genetics; 1989 Jan; 121(1):101-17. PubMed ID: 2492966
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Drosophila ATM homologue Mei-41 has an essential checkpoint function at the midblastula transition.
    Sibon OC; Laurençon A; Hawley R; Theurkauf WE
    Curr Biol; 1999 Mar; 9(6):302-12. PubMed ID: 10209095
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temporal and spatial coordination of chromosome movement, spindle formation, and nuclear envelope breakdown during prometaphase in Drosophila melanogaster embryos.
    Hiraoka Y; Agard DA; Sedat JW
    J Cell Biol; 1990 Dec; 111(6 Pt 2):2815-28. PubMed ID: 2125300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.