These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Regulation of scallop myosin by the regulatory light chain depends on a single glycine residue. Jancso A; Szent-Györgyi AG Proc Natl Acad Sci U S A; 1994 Sep; 91(19):8762-6. PubMed ID: 8090720 [TBL] [Abstract][Full Text] [Related]
6. Chimeric regulatory light chains as probes of smooth muscle myosin function. Trybus KM; Chatman TA J Biol Chem; 1993 Feb; 268(6):4412-9. PubMed ID: 8440724 [TBL] [Abstract][Full Text] [Related]
7. The mechanism of force generation in myosin: a disorder-to-order transition, coupled to internal structural changes. Thomas DD; Ramachandran S; Roopnarine O; Hayden DW; Ostap EM Biophys J; 1995 Apr; 68(4 Suppl):135S-141S. PubMed ID: 7787056 [TBL] [Abstract][Full Text] [Related]
8. The structure of the head-tail junction of the myosin molecule. Offer G; Knight P J Mol Biol; 1996 Mar; 256(3):407-16. PubMed ID: 8604126 [TBL] [Abstract][Full Text] [Related]
9. The neck region of the myosin motor domain acts as a lever arm to generate movement. Uyeda TQ; Abramson PD; Spudich JA Proc Natl Acad Sci U S A; 1996 Apr; 93(9):4459-64. PubMed ID: 8633089 [TBL] [Abstract][Full Text] [Related]
10. A model of Ca(2+)-free calmodulin binding to unconventional myosins reveals how calmodulin acts as a regulatory switch. Houdusse A; Silver M; Cohen C Structure; 1996 Dec; 4(12):1475-90. PubMed ID: 8994973 [TBL] [Abstract][Full Text] [Related]
11. An immunological approach to myosin light-chain function in thick filament linked regulation. 1. Characterization, specificity, and cross-reactivity of anti-scallop myosin heavy- and light-chain antibodies by competitive, solid-phase radioimmunoassay. Wallimann T; Szent-Györgyi AG Biochemistry; 1981 Mar; 20(5):1176-87. PubMed ID: 6784748 [TBL] [Abstract][Full Text] [Related]
12. Role of skeletal and smooth muscle myosin light chains. Lowey S; Trybus KM Biophys J; 1995 Apr; 68(4 Suppl):120S-126S; discussion 126S-127S. PubMed ID: 7787054 [TBL] [Abstract][Full Text] [Related]
13. Regulation of contraction by calcium binding myosins. Szent-Györgyi AG Biophys Chem; 1996 Apr; 59(3):357-63. PubMed ID: 8672723 [TBL] [Abstract][Full Text] [Related]
14. Modulation of Skeletal Muscle Contraction by Myosin Phosphorylation. Vandenboom R Compr Physiol; 2016 Dec; 7(1):171-212. PubMed ID: 28135003 [TBL] [Abstract][Full Text] [Related]
15. Role of gizzard myosin light chains in calcium binding. Kwon H; Melandri FD; Szent-Györgyi AG J Muscle Res Cell Motil; 1992 Jun; 13(3):315-20. PubMed ID: 1527218 [TBL] [Abstract][Full Text] [Related]
16. Primary structure of myosin from the striated adductor muscle of the Atlantic scallop, Pecten maximus, and expression of the regulatory domain. Janes DP; Patel H; Chantler PD J Muscle Res Cell Motil; 2000; 21(5):415-22. PubMed ID: 11129432 [TBL] [Abstract][Full Text] [Related]
18. Coordination of the two heads of myosin during muscle contraction. Lidke DS; Thomas DD Proc Natl Acad Sci U S A; 2002 Nov; 99(23):14801-6. PubMed ID: 12417762 [TBL] [Abstract][Full Text] [Related]
19. Structure of the regulatory domain of scallop myosin at 2.8 A resolution. Xie X; Harrison DH; Schlichting I; Sweet RM; Kalabokis VN; Szent-Györgyi AG; Cohen C Nature; 1994 Mar; 368(6469):306-12. PubMed ID: 8127365 [TBL] [Abstract][Full Text] [Related]
20. Role of essential light chain EF hand domains in calcium binding and regulation of scallop myosin. Fromherz S; Szent-Györgyi AG Proc Natl Acad Sci U S A; 1995 Aug; 92(17):7652-6. PubMed ID: 7644472 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]